#!/bin/bash # # Developed by Fred Weinhaus 8/18/2007 .......... revised 3/11/2010 # # USAGE: 3Drotate option=value infile outfile # USAGE: 3Drotate [-h or -help] # # OPTIONS: any one or more # # pan value rotation about image vertical centerline; # -180 to +180 (deg); default=0 # tilt value rotation about image horizontal centerline; # -180 to +180 (deg); default=0 # roll value rotation about the image center; # -180 to +180 (deg); default=0 # pef value perspective exaggeration factor; # 0 to 3.19; default=1 # idx value +/- pixel displacement in rotation point right/left # in input from center; default=0 # idy value +/- pixel displacement in rotation point down/up # in input from center; default=0 # odx value +/- pixel displacement in rotation point right/left # in output from center; default=0 # ody value +/- pixel displacement in rotation point down/up # in output from center; default=0 # zoom value output zoom factor; where value > 1 means zoom in # and < -1 means zoom out; value=1 means no change # bgcolor value the background color value; any valid IM image # color specification (see -fill); default is black # skycolor value the sky color value; any valid IM image # color specification (see -fill); default is black # auto c center bounding box in output # (odx and ody ignored) # auto zc zoom to fill and center bounding box in output # (odx, ody and zoom ignored) # auto out creates an output image of size needed to hold # the transformed image; (odx, ody and zoom ignored) # vp value virtual-pixel method; any valid IM virtual-pixel method; # default=background # ### # # NAME: 3DROTATE # # PURPOSE: To apply a perspective distortion to an image by providing rotation angles, # zoom, offsets, background color, perspective exaggeration and auto zoom/centering. # # DESCRIPTION: 3DROTATE applies a perspective distortion to an image # by providing any combination of three optional rotation angle: # pan, tilt and roll with optional offsets and zoom and with an optional # control of the perspective exaggeration. The image is treated as if it # were painted on the Z=0 ground plane. The picture plane is then rotated # and then perspectively projected to a camera located a distance equal to # the focal length above the ground plane looking straight down along # the -Z direction. # # # ARGUMENTS: # # PAN is a rotation of the image about its vertical # centerline -180 to +180 degrees. Positive rotations turn the # right side of the image away from the viewer and the left side # towards the viewer. Zero is no rotation. A PAN of +/- 180 deg # achieves the same results as -flip. # # TILT is a rotation of the image about its horizontal # centerline -180 to +180 degrees. Positive rotations turn the top # of the image away from the viewer and the bottom towards the # viewer. Zero is no rotation. A TILT of +/- 180 deg # achieves the same results as -flop. # # ROLL (like image rotation) is a rotation in the plane of the # the image -180 to +180 degrees. Positive values are clockwise # and negative values are counter-clockwise. Zero is no rotation. # A ROLL of any angle achieves the same results as -rotate. # # PAN, TILT and ROLL are order dependent. If all three are provided, # then they will be done in whatever order specified. # # PEF is the perspective exaggeration factor. It ranges from 0 to 3.19. # A normal perspective is achieved with the default of 1. As PEF is # increased from 1, the perspective effect moves towards that of # a wide angle lens (more distortion). If PEF is decreased from 1 # the perspective effect moves towards a telephoto lens (less # distortion). PEF of 0.5 achieves an effect close to no perspective # distortion. As pef gets gets larger than some value which depends # upon the larger the pan, tilt and roll angles become, one reaches # a point where some parts of the picture become so distorted that # they wrap around and appear above the "horizon" # # IDX is the a pixel displacement of the rotation point in the input image # from the image center. Positive values shift to the right along the # sample direction; negative values shift to the left. The default=0 # corresponds to the image center. # # IDY is the a pixel displacement of the rotation point in the input image # from the image center. Positive values shift to downward along the # line direction; negative values shift upward. The default=0 # corresponds to the image center. # # ODX is the a pixel displacement from the center of the output image where # one wants the corresponding input image rotation point to appear. # Positive values shift to the right along the sample direction; negative # values shift to the left. The default=0 corresponds to the output image center. # # ODY is the a pixel displacement from the center of the output image where # one wants the corresponding input image rotation point to appear. # Positive values shift downward along the sample direction; negative # values shift upward. The default=0 corresponds to the output image center. # # ZOOM is the output image zoom factor. Values > 1 (zoomin) cause the image # to appear closer; whereas values < 1 (zoomout) cause the image to # appear further away. # # BGCOLOR is the color of the background to use to fill where the output image # is outside the area of the perspective of the input image. See the IM function # -fill for color specifications. Note that when using rgb(r,g,b), this must be # enclosed in quotes after the equal sign. # # SKYCOLOR is the color to use in the 'sky' area above the perspective 'horizon'. # See the IM function -fill for color specifications. Note that when using # rgb(r,g,b), this must be enclosed in quotes after the equal sign. # # AUTO can be either c, zc or out. If auto is c, then the resulting perspective # of the input image will have its bounding box centered in the output image # whose size will be the same as the input image. If # auto is zc, then the resulting perspective of the input image will have its # bounding box zoomed to fill its largest dimension to match the size of the # the input image and the other dimension will be centered in the output. If # auto is out, then the output image will be made as large or as small as # needed to just fill out the transformed input image. If any of these are # present, then the arguments OSHIFTX, OSHIFTY are ignored. # # VP is the virtual-pixel method, which allows the image to be extended outside # its bounds. For example, vp=background, then the background color is used to # fill the area in the output image which is outside the perspective view of # the input image. If vp=tile, then the perspective view will be tiled to fill # the output image. # # NOTE: The output image size will be the same as the input image size due # to current limitations on -distort Perspective. # # CAVEAT: No guarantee that this script will work on all platforms, # nor that trapping of inconsistent parameters is complete and # foolproof. Use At Your Own Risk. # ###### # # set default value # rotation angles and rotation matrix pan=0 tilt=0 roll=0 R0=(1 0 0) R1=(0 1 0) R2=(0 0 1) # scaling output only sx=1 sy=1 # offset du,dv = output; relative to center of image du=0 dv=0 # offset di,dj = input; relative to center of image di=0 dj=0 # perspective exaggeration factor pef=1 # zoom zoom=1 # background color bgcolor="black" # sky color skycolor="black" # virtual-pixel method vp="background" # set directory for temporary files dir="." # suggestions are dir="." or dir="/tmp" # compute pi pi=`echo "scale=10; 4*a(1)" | bc -l` # set up functions to report Usage and Usage with Description PROGNAME=`type $0 | awk '{print $3}'` # search for executable on path PROGDIR=`dirname $PROGNAME` # extract directory of program PROGNAME=`basename $PROGNAME` # base name of program usage1() { echo >&2 "" echo >&2 "$PROGNAME:" "$@" sed >&2 -n '/^###/q; /^#/!q; s/^#//; s/^ //; 4,$p' "$PROGDIR/$PROGNAME" } usage2() { echo >&2 "" echo >&2 "$PROGNAME:" "$@" sed >&2 -n '/^######/q; /^#/!q; s/^#*//; s/^ //; 4,$p' "$PROGDIR/$PROGNAME" } # function to report error messages, usage and exit errMsg() { echo "" echo $1 echo "" usage1 exit 1 } # function to do dot product of 2 three element vectors function DP3 { V0=($1) V1=($2) DP=`echo "scale=10; (${V0[0]} * ${V1[0]}) + (${V0[1]} * ${V1[1]}) + (${V0[2]} * ${V1[2]})" | bc` } # function to do 3x3 matrix multiply M x N where input are rows of each matrix; M1 M2 M3 N1 N2 N3 function MM3 { [ $# -ne 6 ] && errMsg "--- NOT A VALID SET OF MATRIX PARAMETERS ---" M0=($1) M1=($2) M2=($3) N0=($4) N1=($5) N2=($6) [ ${#M0[*]} -ne 3 -a ${#M1[*]} -ne 3 -a ${#M2[*]} -ne 3 -a ${#N0[*]} -ne 3 -a ${#N1[*]} -ne 3 -a ${#N2[*]} -ne 3 ] && errMsg "--- NOT A VALID SET OF MATRIX ROWS ---" # extract columns n from rows N n0=(${N0[0]} ${N1[0]} ${N2[0]}) n1=(${N0[1]} ${N1[1]} ${N2[1]}) n2=(${N0[2]} ${N1[2]} ${N2[2]}) DP3 "${M0[*]}" "${n0[*]}" P00=$DP DP3 "${M0[*]}" "${n1[*]}" P01=$DP DP3 "${M0[*]}" "${n2[*]}" P02=$DP DP3 "${M1[*]}" "${n0[*]}" P10=$DP DP3 "${M1[*]}" "${n1[*]}" P11=$DP DP3 "${M1[*]}" "${n2[*]}" P12=$DP DP3 "${M2[*]}" "${n0[*]}" P20=$DP DP3 "${M2[*]}" "${n1[*]}" P21=$DP DP3 "${M2[*]}" "${n2[*]}" P22=$DP P0=($P00 $P01 $P02) P1=($P10 $P11 $P12) P2=($P20 $P21 $P22) } # function to project points from input to output domain function forwardProject { ii=$1 jj=$2 numu=`echo "scale=10; ($P00 * $ii) + ($P01 * $jj) + $P02" | bc` numv=`echo "scale=10; ($P10 * $ii) + ($P11 * $jj) + $P12" | bc` den=`echo "scale=10; ($P20 * $ii) + ($P21 * $jj) + $P22" | bc` uu=`echo "scale=0; $numu / $den" | bc` vv=`echo "scale=0; $numv / $den" | bc` } # function to project points from input to output domain function inverseProject { uu=$1 vv=$2 numi=`echo "scale=10; ($Q00 * $uu) + ($Q01 * $vv) + $Q02" | bc` numj=`echo "scale=10; ($Q10 * $uu) + ($Q11 * $vv) + $Q12" | bc` den=`echo "scale=10; ($Q20 * $uu) + ($Q21 * $vv) + $Q22" | bc` ii=`echo "scale=0; $numi / $den" | bc` jj=`echo "scale=0; $numj / $den" | bc` } # function to invert a 3 x 3 matrix using method of adjoint # inverse is the transpose of the matrix of cofactors divided by the determinant function M3inverse { m00=$1 m01=$2 m02=$3 m10=$4 m11=$5 m12=$6 m20=$7 m21=$8 m22=$9 c00=`echo "scale=10; ($m11 * $m22) - ($m21 * $m12)" | bc` c01=`echo "scale=10; ($m20 * $m12) - ($m10 * $m22)" | bc` c02=`echo "scale=10; ($m10 * $m21) - ($m20 * $m11)" | bc` c10=`echo "scale=10; ($m21 * $m02) - ($m01 * $m22)" | bc` c11=`echo "scale=10; ($m00 * $m22) - ($m20 * $m02)" | bc` c12=`echo "scale=10; ($m20 * $m01) - ($m00 * $m21)" | bc` c20=`echo "scale=10; ($m01 * $m12) - ($m11 * $m02)" | bc` c21=`echo "scale=10; ($m10 * $m02) - ($m00 * $m12)" | bc` c22=`echo "scale=10; ($m00 * $m11) - ($m10 * $m01)" | bc` det=`echo "scale=10; ($m00 * $c00) + ($m01 * $c01) + ($m02 * $c02)" | bc` idet=`echo "scale=10; 1 / $det" | bc` Q00=`echo "scale=10; $c00 * $idet" | bc` Q01=`echo "scale=10; $c10 * $idet" | bc` Q02=`echo "scale=10; $c20 * $idet" | bc` Q10=`echo "scale=10; $c01 * $idet" | bc` Q11=`echo "scale=10; $c11 * $idet" | bc` Q12=`echo "scale=10; $c21 * $idet" | bc` Q20=`echo "scale=10; $c02 * $idet" | bc` Q21=`echo "scale=10; $c12 * $idet" | bc` Q22=`echo "scale=10; $c22 * $idet" | bc` Q0=($Q00 $Q01 $Q02) Q1=($Q10 $Q11 $Q12) Q2=($Q20 $Q21 $Q22) } # function to test if entry is floating point number function testFloat { test1=`expr "$1" : '^[0-9][0-9]*$'` # counts same as above but preceeded by plus or minus test2=`expr "$1" : '^[+-][0-9][0-9]*$'` # counts one or more digits test3=`expr "$1" : '^[0-9]*[\.][0-9]*$'` # counts 0 or more digits followed by period followed by 0 or more digits test4=`expr "$1" : '^[+-][0-9]*[\.][0-9]*$'` # counts same as above but preceeded by plus or minus floatresult=`expr $test1 + $test2 + $test3 + $test4` # [ $floatresult = 0 ] && errMsg "THE ENTRY $1 IS NOT A FLOATING POINT NUMBER" } # get input image size function imagesize { width=`identify -format %w $tmpA` height=`identify -format %h $tmpA` } # test for correct number of arguments and get values if [ $# -eq 0 ] then # help information echo "" usage2 exit 0 elif [ $# -gt 15 ] then errMsg "--- TOO MANY ARGUMENTS WERE PROVIDED ---" else while [ $# -gt 0 ] do # get parameter values case "$1" in -h|-help) # help information echo "" usage2 exit 0 ;; -) # STDIN and end of arguments break ;; -*) # any other - argument errMsg "--- UNKNOWN OPTION ---" ;; pan[=]*) # pan angle arg="$1=" pan=`echo "$arg" | cut -d= -f2` # function bc does not seem to like numbers starting with + sign, so strip off pan=`echo "$pan" | sed 's/^[+]\(.*\)$/\1/'` # pantest>0 if floating point number; otherwise pantest=0 testFloat "$pan"; pantest=$floatresult pantestA=`echo "$pan < - 180" | bc` pantestB=`echo "$pan > 180" | bc` [ $pantest -eq 0 ] && errMsg "PAN=$pan IS NOT A NUMBER" [ $pantestA -eq 1 -o $pantestB -eq 1 ] && errMsg "PAN=$pan MUST BE GREATER THAN -180 AND LESS THAN +180" panang=`echo "scale=10; $pi * $pan / 180" | bc` sinpan=`echo "scale=10; s($panang)" | bc -l` sinpanm=`echo "scale=10; - $sinpan" | bc` cospan=`echo "scale=10; c($panang)" | bc -l` Rp0=($cospan 0 $sinpan) Rp1=(0 1 0) Rp2=($sinpanm 0 $cospan) # do matrix multiply to get new rotation matrix MM3 "${Rp0[*]}" "${Rp1[*]}" "${Rp2[*]}" "${R0[*]}" "${R1[*]}" "${R2[*]}" R0=(${P0[*]}) R1=(${P1[*]}) R2=(${P2[*]}) ;; tilt[=]*) # tilt angle arg="$1=" tilt=`echo "$arg" | cut -d= -f2` # function bc does not seem to like numbers starting with + sign, so strip off tilt=`echo "$tilt" | sed 's/^[+]\(.*\)$/\1/'` # tilttest>0 if floating point number; otherwise tilttest=0 testFloat "$tilt"; tilttest=$floatresult tilttestA=`echo "$tilt < - 180" | bc` tilttestB=`echo "$tilt > 180" | bc` [ $tilttest -eq 0 ] && errMsg "tilt=$tilt IS NOT A NUMBER" [ $tilttestA -eq 1 -o $tilttestB -eq 1 ] && errMsg "TILT=$tilt MUST BE GREATER THAN -180 AND LESS THAN +180" tiltang=`echo "scale=10; $pi * $tilt / 180" | bc` sintilt=`echo "scale=10; s($tiltang)" | bc -l` sintiltm=`echo "scale=10; - $sintilt" | bc` costilt=`echo "scale=10; c($tiltang)" | bc -l` Rt0=(1 0 0) Rt1=(0 $costilt $sintilt) Rt2=(0 $sintiltm $costilt) # do matrix multiply to get new rotation matrix MM3 "${Rt0[*]}" "${Rt1[*]}" "${Rt2[*]}" "${R0[*]}" "${R1[*]}" "${R2[*]}" R0=(${P0[*]}) R1=(${P1[*]}) R2=(${P2[*]}) ;; roll[=]*) # roll angle arg="$1=" roll=`echo "$arg" | cut -d= -f2` # function bc does not seem to like numbers starting with + sign, so strip off roll=`echo "$roll" | sed 's/^[+]\(.*\)$/\1/'` # rolltest>0 if floating point number; otherwise rolltest=0 testFloat "$roll"; rolltest=$floatresult rolltestA=`echo "$roll < - 180" | bc` rolltestB=`echo "$roll > 180" | bc` [ $rolltest -eq 0 ] && errMsg "roll=$roll IS NOT A NUMBER" [ $rolltestA -eq 1 -o $rolltestB -eq 1 ] && errMsg "ROLL=$roll MUST BE GREATER THAN -180 AND LESS THAN +180" rollang=`echo "scale=10; $pi * $roll / 180" | bc` sinroll=`echo "scale=10; s($rollang)" | bc -l` sinrollm=`echo "scale=10; - $sinroll" | bc` cosroll=`echo "scale=10; c($rollang)" | bc -l` Rr0=($cosroll $sinroll 0) Rr1=($sinrollm $cosroll 0) Rr2=(0 0 1) # do matrix multiply to get new rotation matrix MM3 "${Rr0[*]}" "${Rr1[*]}" "${Rr2[*]}" "${R0[*]}" "${R1[*]}" "${R2[*]}" R0=(${P0[*]}) R1=(${P1[*]}) R2=(${P2[*]}) ;; pef[=]*) # pef arg="$1=" pef=`echo "$arg" | cut -d= -f2` # function bc does not seem to like numbers starting with + sign, so strip off pef=`echo "$pef" | sed 's/^[+]\(.*\)$/\1/'` # peftest>0 if floating point number; otherwise peftest=0 testFloat "$pef"; peftest=$floatresult peftestA=`echo "$pef < 0" | bc` peftestB=`echo "$pef > 3.19" | bc` [ $peftest -eq 0 ] && errMsg "PEF=$pef IS NOT A NUMBER" ;; idx[=]*) # input x shift arg="$1=" di=`echo "$arg" | cut -d= -f2` # function bc does not seem to like numbers starting with + sign, so strip off di=`echo "$di" | sed 's/^[+]\(.*\)$/\1/'` # ditest>0 if floating point number; otherwise ditest=0 testFloat "$di"; ditest=$floatresult [ $ditest -eq 0 ] && errMsg "ISHIFTX=$di IS NOT A NUMBER" ;; idy[=]*) # input y shift arg="$1=" dj=`echo "$arg" | cut -d= -f2` # function bc does not seem to like numbers starting with + sign, so strip off dj=`echo "$dj" | sed 's/^[+]\(.*\)$/\1/'` # djtest>0 if floating point number; otherwise ditest=0 testFloat "$dj"; djtest=$floatresult [ $djtest -eq 0 ] && errMsg "ISHIFTY=$dj IS NOT A NUMBER" ;; odx[=]*) # output x shift arg="$1=" du=`echo "$arg" | cut -d= -f2` # function bc does not seem to like numbers starting with + sign, so strip off du=`echo "$du" | sed 's/^[+]\(.*\)$/\1/'` # dutest>0 if floating point number; otherwise ditest=0 testFloat "$du"; dutest=$floatresult [ $dutest -eq 0 ] && errMsg "OSHIFTX=$du IS NOT A NUMBER" ;; ody[=]*) # output y shift arg="$1=" dv=`echo "$arg" | cut -d= -f2` # function bc does not seem to like numbers starting with + sign, so strip off dv=`echo "$dv" | sed 's/^[+]\(.*\)$/\1/'` # dvtest>0 if floating point number; otherwise ditest=0 testFloat "$dv"; dvtest=$floatresult [ $dvtest -eq 0 ] && errMsg "OSHIFTY=$dv IS NOT A NUMBER" ;; zoom[=]*) # output zoom arg="$1=" zoom=`echo "$arg" | cut -d= -f2` # function bc does not seem to like numbers starting with + sign, so strip off zoom=`echo "$zoom" | sed 's/^[+]\(.*\)$/\1/'` # zoomtest>0 if floating point number; otherwise peftest=0 testFloat "$zoom"; zoomtest=$floatresult zoomtest=`echo "$zoom < 1 && $zoom > -1" | bc` [ $zoomtest -eq 1 ] && errMsg "ZOOM=$zoom MUST BE GREATER THAN 1 OR LESS THAN -1" ;; bgcolor[=]*) # output background color arg="$1=" bgcolor=`echo "$arg" | cut -d= -f2` ;; skycolor[=]*) # output sky color arg="$1=" skycolor=`echo "$arg" | cut -d= -f2` ;; vp[=]*) # virtual pixel method arg="$1=" vp=`echo "$arg" | cut -d= -f2` [ "$vp" != "background" -a "$vp" != "dither" -a "$vp" != "edge" -a "$vp" != "mirror" -a "$vp" != "random" -a "$vp" != "tile" -a "$vp" != "transparent" ] && errMsg "VP=$vp IS NOT A VALID VALUE" ;; auto[=]*) # output background color arg="$1=" auto=`echo "$arg" | cut -d= -f2` [ "$auto" != "c" -a "$auto" != "zc" -a "$auto" != "out" ] && errMsg "AUTO=$auto IS NOT A VALID VALUE" ;; *[=]*) # not valid errMsg "$1 IS NOT A VALID ARGUMENT" ;; *) # end of arguments break ;; esac shift # next option done # # get infile and outfile infile=$1 outfile=$2 fi # setup temporary images and auto delete upon exit # use mpc/cache to hold input image temporarily in memory tmpA="$dir/3Drotate_$$.mpc" tmpB="$dir/3Drotate_$$.cache" trap "rm -f $tmpA $tmpB; exit 0" 0 trap "rm -f $tmpA $tmpB; exit 1" 1 2 3 15 # test that infile provided [ "$infile" = "" ] && errMsg "NO INPUT FILE SPECIFIED" # test that outfile provided [ "$outfile" = "" ] && errMsg "NO OUTPUT FILE SPECIFIED" if convert -quiet -regard-warnings "$infile" +repage "$tmpA" then [ "$pef" = "" ] && pef=1 else errMsg "--- FILE $infile DOES NOT EXIST OR IS NOT AN ORDINARY FILE, NOT READABLE OR HAS ZERO SIZE ---" fi # get input image width and height imagesize maxwidth=`expr $width - 1` maxheight=`expr $height - 1` # deal with auto adjustments to values if [ "$auto" = "zc" ] then du=0 dv=0 zoom=1 elif [ "$auto" = "c" ] then du=0 dv=0 fi # convert offsets of rotation point to relative to pixel 0,0 di=`echo "scale=10; ($di + (($width - 1) / 2)) / 1" | bc` dj=`echo "scale=10; ($dj + (($height - 1) / 2)) / 1" | bc` du=`echo "scale=10; $du / 1" | bc` dv=`echo "scale=10; $dv / 1" | bc` # convert zoom to scale factors if [ `echo "$zoom >= 1" | bc` -eq 1 ] then sx=`echo "scale=10; 1 / $zoom" | bc` sy=$sx elif [ `echo "$zoom <= -1" | bc` -eq 1 ] then sx=`echo "scale=10; - $zoom / 1" | bc` sy=$sx fi # Consider the picture placed on the Z=0 plane and the camera a distance # Zc=f above the picture plane looking straight down at the image center. # Now the perspective equations (in 3-D) are defined as (x,y,f) = M (X',Y',Z'), # where the camera orientation matrix M is the identity matrix but with M22=-1 # because the camera is looking straight down along -Z. # Thus a reflection transformation relative to the ground plane coordinates. # Let the camera position Zc=f=(sqrt(ins*ins + inl*inl)) / ( 2 tan(fov/2) ) # Now we want to rotate the ground points corresponding to the picture corners. # The basic rotation is (X',Y',Z') = R (X,Y,0), where R is the rotation matrix # involving pan, tilt and roll. # But we need to convert (X,Y,0) to (X,Y,1) and also to offset for Zc=f # First we note that (X,Y,0) = (X,Y,1) - (0,0,1) # Thus the equation becomes (x,y,f) = M {R [(X,Y,1) - (0,0,1)] - (0,0,Zc)} = MT (X,Y,1) # But R [(X,Y,1) - (0,0,1)] = R [II (X,Y,1) - S (X,Y,1)] = R (II-S) (X,Y,1), where # II is the identity matrix and S is an all zero matrix except for S22=1. # Thus (II-S) is the identity matrix with I22=0 and # RR = R (II-S) is just R with the third column all zeros. # Thus we get (x,y,f) = M {RR (X,Y,1) - (0,0,Zc)}. # But M {RR (X,Y,1) - (0,0,Zc)} = M {RR(X,Y,1) - D (X,Y,1)}, where # D is an all zero matrix with D22 = Zc = f. # So that we get M (RR-D) (X,Y,1) = MT (X,Y,1), where # where T is just R with the third column (0,0,-f), i.e. T02=0, T12=0, T22=-f # But we need to allow for scaling and offset of the output coordinates and # conversion from (x,y,f) to (u,v,1)=O and conversion of input coordinates # from (X,Y,1) to (i,j,1)=I. # Thus the forward transformation becomes AO=MTBI or O=A'MTBI or O=PI, # where prime means inverse. # However, to do the scaling of the output correctly, need to offset by the input # plus output offsets, then scale, which is all put into A'. # Thus the forward transformation becomes AO=MTBI or O=A'MTBI where A'=Ai # but we will merge A'M into Aim # Thus the inverse transform becomes # I=QO where Q=P' # A=output scaling, offset and conversion matrix # B=input offset and conversion matrix (scaling only needs to be done in one place) # M=camera orientation matrix # R=image rotation matrix Rroll Rtilt Rpan # T=matrix that is R but R33 offset by f + 1 # O=output coords vector (i,j,1) # I=input coords vector (u,v,1)=(is,il,1) # P=forward perspective transformation matrix # Q=inverse perspective transformation matrix # # For a 35 mm camera whose film format is 36mm wide and 24mm tall, when the focal length # is equal to the diagonal, the field of view is 53.13 degrees and this is # considered a normal view equivalent to the human eye. # See http://www.panoramafactory.com/equiv35/equiv35.html # Max limit on dfov is 180 degrees (pef=3.19) where get single line like looking at picture on edge. # Above this limit the picture becomes like the angles get reversed. # Min limit on dfov seems to be slightly greater than zero degrees. # Practical limits on dfov depend upon orientation angles. # For tilt=45, this is about 2.5 dfov (pef=2.5). Above this, some parts of the picture # that are cut off at the bottom, get wrapped and stretched in the 'sky'. dfov=`echo "scale=10; 180 * a(36/24) / $pi" | bc -l` if [ "$pef" = "" ] then pfact=1 elif [ "$pef" = "0" ] then pfact=`echo "scale=10; 0.01 / $dfov" | bc` else pfact=$pef fi #maxpef=`echo "scale=5; 180 / $dfov" | bc` #echo "maxpef=$maxpef" #compute new field of view based upon pef (pfact) dfov=`echo "scale=10; $pfact * $dfov" | bc` dfov2=`echo "scale=10; $dfov / 2" | bc` arg=`echo "scale=10; $pi * $dfov2 / 180" | bc` sfov=`echo "scale=10; s($arg)" | bc -l` cfov=`echo "scale=10; c($arg)" | bc -l` tfov=`echo "scale=10; $sfov / $cfov" | bc -l` #echo "tfov=$tfov" # calculate focal length in same units as wall (picture) using dfov diag=`echo "scale=10; sqrt(($width * $width) + ($height * $height))" | bc` focal=`echo "scale=10; ($diag / (2 * $tfov))" | bc -l` #echo "focal=$focal" # calculate forward transform matrix Q # define the input offset and conversion matrix dim=`echo "scale=10; - $di" | bc` B0=(1 0 $dim) B1=(0 -1 $dj) B2=(0 0 1) # define the output scaling, offset and conversion matrix inverse Ai and merge with M # to become Aim #A0=($sx 0 $sx*(-$du-$di)) #A1=(0 -$sy $sy*($dv+$dj)) #A2=(0 0 -$focal) #M0=(1 0 0) #M1=(0 1 0) #M2=(0 0 -1) aim00=`echo "scale=10; 1 / $sx" | bc` aim02=`echo "scale=10; -($sx * ($di + $du)) / ($sx * $focal)" | bc` aim11=`echo "scale=10; -1 / $sy" | bc` aim12=`echo "scale=10; -($sy * ($dj + $dv)) / ($sy * $focal)" | bc` aim22=`echo "scale=10; -1 / $focal" | bc` Aim0=($aim00 0 $aim02) Aim1=(0 $aim11 $aim12) Aim2=(0 0 $aim22) # now do successive matrix multiplies from right towards left of main equation P=A'RB # convert R to T by setting T02=T12=0 and T22=-f focalm=`echo "scale=10; - $focal" | bc` T0=(${R0[0]} ${R0[1]} 0) T1=(${R1[0]} ${R1[1]} 0) T2=(${R2[0]} ${R2[1]} $focalm) # multiply T x B = P MM3 "${T0[*]}" "${T1[*]}" "${T2[*]}" "${B0[*]}" "${B1[*]}" "${B2[*]}" # multiply Aim x P = P MM3 "${Aim0[*]}" "${Aim1[*]}" "${Aim2[*]}" "${P0[*]}" "${P1[*]}" "${P2[*]}" # the resulting P matrix is now the perspective coefficients for the inverse transformation P00=${P0[0]} P01=${P0[1]} P02=${P0[2]} P10=${P1[0]} P11=${P1[1]} P12=${P1[2]} P20=${P2[0]} P21=${P2[1]} P22=${P2[2]} # project input corners to output domain #echo "UL" i=0 j=0 #echo "i,j=$i,$j" forwardProject $i $j #echo "u,v=$uu,$vv" u1=$uu v1=$vv #echo "UR" i=$maxwidth j=0 #echo "i,j=$i,$j" forwardProject $i $j #echo "u,v=$uu,$vv" u2=$uu v2=$vv #echo "BR" i=$maxwidth j=$maxheight #echo "i,j=$i,$j" forwardProject $i $j #echo "u,v=$uu,$vv" u3=$uu v3=$vv #echo "BL" i=0 j=$maxheight #echo "i,j=$i,$j" forwardProject $i $j #echo "u,v=$uu,$vv" u4=$uu v4=$vv #echo "C" #i=`echo "scale=10; $maxwidth / 2" | bc` #j=`echo "scale=10; $maxheight / 2" | bc` #echo "i,j=$i,$j" #forwardProject $i $j #echo "u,v=$uu,$vv" #u5=$uu #v5=$vv # unused : ' # Now invert P to get Q for the inverse perspective transformation # Use the Method of the Adjoint Matrix = transpose of matrix of cofactors divided by the determinant # M3inverse $P00 $P01 $P02 $P10 $P11 $P12 $P20 $P21 $P22 # # project output corners to input domain # UL #echo "UL 0,0" #u=$u1 #v=$v1 #echo "u,v=$u,$v" #inverseProject $u $v #echo "i,j=$ii,$jj" #echo "UR 255,0" #u=$u2 #v=$v2 #echo "u,v=$u,$v" #inverseProject $u $v #echo "i,j=$ii,$jj" #echo "BR 255,255" #u=$u3 #v=$v3 #echo "u,v=$u,$v" #inverseProject $u $v #echo "i,j=$ii,$jj" #echo "BL 0,255" #u=$u4 #v=$v4 #echo "u,v=$u,$v" #inverseProject $u $v #echo "i,j=$ii,$jj" #echo "C 127.5,127.5" #u=$u5 #v=$v5 #echo "u,v=$u,$v" #inverseProject $u $v #echo "i,j=$ii,$jj" ' # deal with adjustments for auto settings # first get the bounding box dimensions uArr=($u1 $u2 $u3 $u4) vArr=($v1 $v2 $v3 $v4) index=0 umin=1000000 umax=-1000000 vmin=1000000 vmax=-1000000 while [ $index -lt 4 ] do [ `echo "${uArr[$index]} < $umin" | bc` -eq 1 ] && umin=${uArr[$index]} [ `echo "${uArr[$index]} > $umax" | bc` -eq 1 ] && umax=${uArr[$index]} [ `echo "${vArr[$index]} < $vmin" | bc` -eq 1 ] && vmin=${vArr[$index]} [ `echo "${vArr[$index]} > $vmax" | bc` -eq 1 ] && vmax=${vArr[$index]} index=`expr $index + 1` done delu=`echo "scale=10; $umax - $umin + 1" | bc` delv=`echo "scale=10; $vmax - $vmin + 1" | bc` if [ "$auto" = "c" ] then offsetu=`echo "scale=10; ($width - $delu) / 2" | bc` offsetv=`echo "scale=10; ($height - $delv) / 2" | bc` u1=`echo "scale=0; $offsetu + ($u1 - $umin)" | bc` v1=`echo "scale=0; $offsetv + ($v1 - $vmin)" | bc` u2=`echo "scale=0; $offsetu + ($u2 - $umin)" | bc` v2=`echo "scale=0; $offsetv + ($v2 - $vmin)" | bc` u3=`echo "scale=0; $offsetu + ($u3 - $umin)" | bc` v3=`echo "scale=0; $offsetv + ($v3 - $vmin)" | bc` u4=`echo "scale=0; $offsetu + ($u4 - $umin)" | bc` v4=`echo "scale=0; $offsetv + ($v4 - $vmin)" | bc` elif [ "$auto" = "zc" ] then if [ `echo "$delu > $delv" | bc` -eq 1 ] then del=$delu offsetu=0 offsetv=`echo "scale=10; ($height - ($delv * $width / $delu)) / 2" | bc` else del=$delv offsetu=`echo "scale=10; ($width - ($delu * $height / $delv)) / 2" | bc` offsetv=0 fi u1=`echo "scale=0; $offsetu + (($u1 - $umin) * $width / $del)" | bc` v1=`echo "scale=0; $offsetv + (($v1 - $vmin) * $height / $del)" | bc` u2=`echo "scale=0; $offsetu + (($u2 - $umin) * $width / $del)" | bc` v2=`echo "scale=0; $offsetv + (($v2 - $vmin) * $height / $del)" | bc` u3=`echo "scale=0; $offsetu + (($u3 - $umin) * $width / $del)" | bc` v3=`echo "scale=0; $offsetv + (($v3 - $vmin) * $height / $del)" | bc` u4=`echo "scale=0; $offsetu + (($u4 - $umin) * $width / $del)" | bc` v4=`echo "scale=0; $offsetv + (($v4 - $vmin) * $height / $del)" | bc` fi # # now do the perspective distort if [ "$auto" = "out" ] then distort="+distort" else distort="-distort" fi im_version=`convert -list configure | \ sed '/^LIB_VERSION_NUMBER /!d; s//,/; s/,/,0/g; s/,0*\([0-9][0-9]\)/\1/g'` if [ "$im_version" -lt "06030600" ] then convert $tmpA -virtual-pixel $vp -background $bgcolor \ -mattecolor $skycolor $distort Perspective \ "0,0 $maxwidth,0 $maxwidth,$maxheight 0,$maxheight $u1,$v1 $u2,$v2 $u3,$v3 $u4,$v4" $outfile else convert $tmpA -virtual-pixel $vp -background $bgcolor \ -mattecolor $skycolor $distort Perspective \ "0,0 $u1,$v1 $maxwidth,0 $u2,$v2 $maxwidth,$maxheight $u3,$v3 0,$maxheight $u4,$v4" $outfile fi exit 0