

G3524_HD_EN_V1.01

Document Title	G3524 Hardware Design
Revision	1.01
Date	2017-03-15
Status	Released
Document Control ID	G3524_HD_EN_V1.01

General Notes

KingcomTek offers this information as a service to its customers, to support application and engineering efforts that use the products designed by KingcomTek. The information provided is based upon requirements specifically provided for customers of KingcomTek. KingcomTek has not undertaken any independent search for additional information, relevant to any information that may be in the customer's possession. Furthermore, system validation of this product designed by KingcomTek within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information of KingcomTek Co., Ltd. Copying this document, distribution to others, and communication of the contents thereof, are forbidden without permission. Offenders are liable to the payment of damages. All rights are reserved in the event of a patent grant or registration of a utility model or design. All specifications supplied herein are subject to change without notice at any time.

www.kin

Contents

General Notes	2
Contents	3
Revision history	7
1 Introduction	8
1.1 Related documents	8
1.2 Terms and abbreviations	9
1.3 Safety caution	11
2 Product concept	
2.1 Key features	12
2.2 Functional diagram	14
3 Application interface	15
3.1 Pin	16
3.1.1 Pin assignment	16
3.1.2 Pin description	
3.2 Power supply	
3.2.1 Power features of module	
3.2.2 Decrease supply voltage drop	20
3.2.3 Reference design for power supply	21
3.2.4 Monitor power supply	21
3.3 Power on and down scenarios	
3.3.1 Power on the module using the PWRKEY pin	21
3.3.2 Power down	23
3.4 Restart.	25
3.5 Power saving.	
3.5.1 Sleep mode	
3.5.2 Wake up the module from SLEEP mode	
3.6 Summary of state transitions	
3.7 RTC backup	
3.8 Serial interfaces	
3.8.1 UART Port	29
3.8.2 UART Port	31
3.8.3 UART Application	
3.9 Audio interfaces	
3.9.1 Decrease TDD noise and other noise	
3.9.2 Microphone interfaces design	
3.9.3 Receiver interface design	
3.9.4 Earphone interface design	
3.9.5 Loud speaker interface design	
3.9.6 Audio characteristics	
3.10 SIM card interface	
3.10.1 SIM card application	
3.10.2 6 Pin SIM cassette	

KingcomTek

4 Antenna interface	
4.1 RF reference design	
4.2 RF output power	41
4.3 RF receiving sensitivity	42
4.4 Operating frequencies	
5 Mechanical dimensions	
5.1 Mechanical dimensions of module	
5.2 Footprint of recommendation	
5.3 Top view of the module	
5.4 Bottom view of the module	46

Boomchina.com www.kingcomchina.com

Table Index

Table 1: Related documents	
Table 2: Terms and abbreviations	9
Table 3: Module key features	12
Table 4: Coding schemes and maximum net data rates over air interface	
Table 5: G3524 pin assignment	16
Table 6: Pin description	
Table 7: Summary of state transition	
Table 8: Logic levels of the UART interface	
Table 9: Logic levels of the UART interface	
Table 10: Pin definition of Audio interface	
Table 11: AOUT2 output characteristics	
Table 12: Typical electret microphone characteristics	
Table 13: Typical speaker characteristics	
Table 14: Pin definition of the SIM interface	
Table 15: Pin description of Amphenol SIM card holder	
Table 16: Pin definition of the Antenna interface	41
Table 17: The module conducted RF output power	41
Table 18: The module conducted RF receiving sensitivity	42
Table 19: The module operating frequencies	
www.kingcomchina.com	

KingcomTek

Figure Index

Figure 1: Voltage ripple during transmitting	20
Figure 2: Reference circuit for the VBAT input	21
Figure 3: Reference circuit for power supply	21
Figure 4: Turn on the module using driving circuit	22
Figure 5: Turn on the module using keystroke	22
Figure 6: Turn on the module using keystroke	23
Figure 7: Timing of turning off the module	24
Figure 8: Reference circuit for EMERG_OFF by using driving circuit	24
Figure 9: Reference circuit for EMERG_OFF by using button	25
Figure 10: Timing of restarting system	25
Figure 11: Timing of restarting system after emergency shutdown	26
Figure 12: RTC supply from non-chargeable battery	27
Figure 13: RTC supply from rechargeable battery	27
Figure 14: RTC supply from capacitor	28
Figure 15: Seiko XH414H-IV01E Charge Characteristics	28
Figure 16: Connection of all functional UART port	30
Figure 17: Connection of three lines UART port	30
Figure 18: Connection of UART port associated hardware flow control	31
Figure 19: Connection of firmware upgrade	31
Figure 20: Connection of software debug	32
Figure 21: 3.3V level match circuit	32
Figure 22: 5V level match circuit	33
Figure 23: RS232 level match circuit	33
Figure 24: Microphone interface design of AIN1&AIN2	35
Figure 25: Receiver interface design of AOUT1	36
Figure 26: Earphone interface design	36
Figure 27: Loud speaker interface design	37
Figure 28: Reference circuit of the 6 pins SIM card	39
Figure 29: Amphenol C707 10M006 512 2 SIM card holder	40
Figure 30: Reference circuit of RF	41
Figure 31: G3524 top and side dimensions (Unit: mm)	43
Figure 32: G3524 bottom dimensions (Unit: mm)	43
Figure 33: Footprint of recommendation (Unit: mm)	44
Figure 34: Top view of the module	45
Figure 35: Bottom view of the module	46

Revision history

Revision	Date	Description of change	Author
2013-07-02	1.00	Initial	Bao
2017-3-15	1.01		bao
	3	Solution of the second	om

1 Introduction

This document defines Module G3524 and describes its hardware interface which are connected with the customer application and the air interface.

This document can help customers quickly understand the interface specifications, electrical and mechanical details of G3524. Associated with application notes and user guide, customers can use G3524 to design and set up mobile applications quickly.

1.1 Related documents

1.1 Г	verateu uocuments	
Table 1	Related documents	
SN	Document name	Remark
[1]	ITU-T Draft new recommendation V.25ter:	Serial asynchronous automatic dialing and control
[2]	GSM 07.07:	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)
[3]	GSM 07.10:	Support GSM 07.10 multiplexing protocol
[4]	GSM 07.05:	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
[5]	GSM 11.14:	Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface
[6]	GSM 11.11:	Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface
[7]	GSM 03.38:	Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information
[8]	GSM 11.10	Digital cellular telecommunications system (Phase 2) ; Mobile Station (MS) conformance specification ; Part 1: Conformance specification
[9]	AN_Serial Port	AN_Serial Port

1.2 Terms and abbreviations

Abbreviation	Description	
ADC	Analog-to-Digital Converter	
AMR	Adaptive Multi-Rate	
ARP	Antenna Reference Point	
ASIC	Application Specific Integrated Circuit	
BER	Bit Error Rate	
BTS	Base Transceiver Station	
СНАР	Challenge Handshake Authentication Protocol	
CS	Coding Scheme	
CSD	Circuit Switched Data	1
CTS	Clear to Send	
DAC	Digital-to-Analog Converter	
DRX	Discontinuous Reception	
DSP	Digital Signal Processor	
DTE	Data Terminal Equipment (typically computer, terminal, printer)	
DTR	Data Terminal Ready	
DTX	Discontinuous Transmission	
EFR	Enhanced Full Rate	
EGSM	Enhanced GSM	
EMC	Electromagnetic Compatibility	
ESD	Electrostatic Discharge	
ETS	European Telecommunication Standard	
FCC	Federal Communications Commission (U.S.)	
FDMA	Frequency Division Multiple Access	
FR	Full Rate	
GMSK	Gaussian Minimum Shift Keying	
GPRS	General Packet Radio Service	
GSM	Global Standard for Mobile Communications	
HR	Half Rate	
I/O	Input/Output	
IC	Integrated Circuit	
IMEI	International Mobile Equipment Identity	
kbps	Kilo bits per second	
LED	Light Emitting Diode	
Li-Ion	Lithium-Ion	
МО	Mobile Originated	
MS	Mobile Station (GSM engine), also referred to as TE	
MT	Mobile Terminated	
PAP	Password Authentication Protocol	

Table 2: Terms and abbreviations

KingcomTek

РВССН	Packet Switched Broadcast Control Channel	
РСВ	Printed Circuit Board	
PCS	Personal Communication System, also referred to as GSM 1900	
PDU	Protocol Data Unit	
РРР	Point-to-point protocol	
RF	Radio Frequency	
RMS	Root Mean Square (value)	
RTC	Real Time Clock	
RX	Receive Direction	
SIM	Subscriber Identification Module	
SMS	Short Message Service	
TDMA	Time Division Multiple Access	
TE	Terminal Equipment, also referred to as DTE	
ТХ	Transmit Direction	
UART	Universal Asynchronous Receiver & Transmitter	
URC	Unsolicited Result Code	7
USSD	Unstructured Supplementary Service Data	
VSWR	Voltage Standing Wave Ratio	
Vmax	Maximum Voltage Value	
Vnorm	Normal Voltage Value	
Vmin	Minimum Voltage Value	
VIHmax	Maximum Input High Level Voltage Value	
VIHmin	Minimum Input High Level Voltage Value	
VILmax	Maximum Input Low Level Voltage Value	
VILmin	Minimum Input Low Level Voltage Value	
VImax	Absolute Maximum Input Voltage Value	
VImin	Absolute Minimum Input Voltage Value	
VOHmax	Maximum Output High Level Voltage Value	
VOHmin	Minimum Output High Level Voltage Value	
VOLmax	Maximum Output Low Level Voltage Value	
VOLmin	Minimum Output Low Level Voltage Value	
Inorm	Normal Current	
Imax	Maximum Load Current	
Phonebook abbreviat	ions	
FD	SIM fix dialing phonebook	
LD	SIM last dialing phonebook (list of numbers most recently dialed)	
MC	Mobile Equipment list of unanswered MT calls (missed calls)	
ON	SIM (or ME) own numbers (MSISDNs) list	
RC	Mobile Equipment list of received calls	
SM	SIM phonebook	
NC	Not connect	

1.3 Safety caution

The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating G3524 module. Manufacturers of the ellular terminal should send the following safety information to users and operating personnel and to incorporate these guidelines into all manuals supplied with the product. If not so, KingcomTek does not take on any liability for customer failure to comply with these precautions.

	When in a hospital or other health care facility, observe the restrictions about the use	
	of mobile. Switch the cellular terminal or mobile off. Medical equipment may be	
	sensitive to not operate normally for RF energy interference.	
	Switch off the cellular terminal or mobile before boarding an aircraft. Make sure	
	it switched off. The operation of wireless appliances in an aircraft is forbidden to	
X	prevent interference with communication systems. Forget to think much of these	
1	instructions may lead to the flight safety or offend against local legal action, or	
	both.	1
	Do not operate the cellular terminal or mobile in the presence of flammable gas	
	or fume. Switch off the cellular terminal when you are near petrol station, fuel	
	depot, chemical plant or where blasting operations are in progress. Operation of	
	any electrical equipment in potentially explosive atmosphere can constitute a	
	safety hazard.	
	Your cellular terminal or mobile receives and transmits radio frequency energy while	
RRE	switched on. RF interference can occur if it is used close to TV set, radio, computer or	
	other electric equipment.	
	Road safety comes first! Do not use a hand-held cellular terminal or mobile	
	while driving a vehicle, unless it is securely mounted in a holder for hands-free	
	operation. Before making a call with a hand-held terminal or mobile, park the	
	vehicle.	
	GSM cellular terminals or mobiles operate over radio frequency signal and	
	cellular network and cannot be guaranteed to connect in all conditions, for	
	example no mobile fee or an invalid SIM card. While you are in this condition and	
	need emergent help, Please Remember using emergency call. In order to make or	
	receive call, the cellular terminal or mobile must be switched on and in a service area	
SOS	with adequate cellular signal strength.	
\mathbf{C}	Some networks do not allow for emergency call if certain network services or phone	
	features are in use (e.g. lock functions, fixed dialing etc.). You may have to	
	deactivate those features before you can make an emergency call.	
	Also, some networks require that a valid SIM card be properly inserted in	
	cellular terminal or mobile.	

2 Product concept

G3524 is a Quad-band GSM/GPRS engine that works at frequencies of GSM850MHz, GSM900MHz,

DCS1800MHz and PCS1900MHz. The G3524 features GPRS multi-slot class 12 and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4. For more details about GPRS multi-slot classes and coding schemes, please refer to Appendix A and Appendix B.

With a tiny profile of 19.9mm×23.6mm×2.65mm, the module can meet the requirements of almost all M2M applications, including Tracking and Tracing, Industrial PDA, Wireless POS, Intelligent Measurement, Remote Controlling, etc.

G3524 is an SMD type module with LCC package, which can be embedded in customer applications. It provides abundant hardware interfaces between the module and customer's host board.

The module is designed with power saving technique so that the current consumption is as low as 1.3 mA in SLEEP mode when DRX is 5.

G3524 is integrated with Internet service protocols, which are TCP/IP, UDP, FTP and PPP. Extended AT commands have been developed for customer to use these Internet service protocols easily.

2.1 Key features

Table 3: Module key features

Feature	Implementation
Power supply	Single supply voltage 3.3V ~ 4.2V
	Typical supply voltage 4V
Power saving	Typical power consumption in SLEEP mode: 1.2 mA @ DRX=5
	1.1 mA @ DRX=9
Frequency bands	 Quad-band: GSM850, GSM900, DCS1800, PCS1900
	• The module can search these frequency bands automatically
	• The frequency bands can be set by AT command
	• Compliant with GSM Phase 2/2+
GSM class	Small MS
Transmitting power	• Class 4 (2W): EGSM 900 / GSM850
	• Class 1 (1W): DCS 1800 / PCS1900
GPRS connectivity	• GPRS multi-slot class 10 (default)
	• GPRS multi-slot class 8 (configurable)
Temperature range	• Normal operation: $-20^{\circ}C \sim +80^{\circ}C *$
	• Restricted operation:- 30° C ~ - 20° C and + 80° C ~ + 85° C
	• Storage temperature:- $35^{\circ}C \sim +90^{\circ}C$

KingcomTek

DATA GPRS.	• GPRS data downlink transfer: max 85.6 kbns	
DATA OF RO.	GPRS data unlink transfer: max 85.6 kbps	
CSD	• Coding schemes: CS 1 CS 2 CS 3 and CS 4	
C5D.	 Support the protocols PAP (Password Authentication Protocol) usually 	
	used for PDP connections	
	 Internet service protocols TCP/IP 	
	 Support Packet Switched Broadcast Control Channel (PBCCH) 	
	 Support racket Switched Dioadeast Control Channel (TDCCH) CSD transmission rates: 2.4.4.8.9.6.14.4 kbns non-transparent 	
	 Unstructured Supplementary Services Data (USSD) support 	
SMS	Text and PDU mode	
51415	SMS storage: SIM card	
SIM interface	Support SIM card: 1.8V, 2V	
Audio footuros	Support Shire Card. 1.6 V, 5 V	
Audio Icaluites	Half Rate (FTS 06 20)	
	= Full Pate (ETS 06.10)	
	= Full Rate (ETS 06.10)	
	 Adaptive multi rate (AMP) 	
	Adaptive multi fate (AWK) Naisa Baduatian	
	 Finhadded one amplifier of aloss K with maximum driving newer up to 	
	• Embedded one ampinier of class K with maximum driving power up to	
UART Internace	CART Foit.	
	Support autobauding from 4800 hps to 115200 hps	
	Use for AT command GPPS data and CSD data	
	Multipleving function	
	Debug Port:	
	• Two lines on debug UART port interface . DBG TXD and	
	DBG RXD	
	 Debug Port only used for software debugging 	
Phonebook	Support phonebook types: SM_ED_LD_ON	
management	Support phoneodok types.olvi, i D, DD, ON,	
SIM Application	Support SAT class 3 GSM 11 14 Palease 00	
Toolkit		
Real time clock	Implemented	
Physical	Size-23 6mm v 10 9mm v 2.2 mm	
characteristics	5120.2.5.011111 A 17.711111 A 2.2 11111	
Firmware unorade	Firmware upgrade via LIART Port	
Antonno interface	Connected via 50 Ohm antenno ped	
Antenna interface	Connected via 50 Onin antenna pad	

Table 4: Coding schemes and maximum net data rates over air interface

KingcomTek

Coding scheme	1 Timeslot	2 Timeslot	4 Timeslot
CS-1:	9.05kbps	18.1kbps	36.2kbps
CS-2:	13.4kbps	26.8kbps	53.6kbps
CS-3:	15.6kbps	31.2kbps	62.4kbps
CS-4:	21.4kbps	42.8kbps	85.6kbps

2.2 Functional diagram

The following figure shows a block diagram of the G3524 module and illustrates the major functional parts:

- Power management
- Baseband
- The GSM radio frequency part
- The Peripheral interface .
 - —SIM interface
 - -Audio interface

 - —Power supply
 - -RF interface
 - -Turn on/off interface
 - -RTC interface

3 Application interface

The module is equipped with 42 pin SMT pad and it adopts LCC package. Detailed descriptions on Sub-interfaces included in these pads are given in the following chapters:

Power supply Turn on/off Power saving RTC UART interfaces Audio interfaces SIM interface

3.1 Pin

3.1.1 Pin assignment

Table 5: G3524 pin assignment

PIN NO.	PIN NAME	PIN NO.	I/O
1	GND	21	TXD
2	MIC2P	22	RXD
3	MIC2N	23	CTS
4	MIC1P	24	RTS
5	MIC1N	25	DCD
6	SPK1N	26	RI
7	SPK1P	27	SIM_VDD

KingcomTek

8	LOUDSPKN	28	SIM_RST
9	LOUDSPKP	29	SIM_DATA
10	PWRKEY	30	SIM_CLK
11	EMERG_OFF(RST)	31	GND
12	STSTUS	32	VRTC
13	NETLIGHT	33	VBAT
14	DBG_RXD	34	VBAT
15	DBG_TXD	35	GND
16	RESERVED	36	GND
17	RESERVED	37	GND
18	RESERVED	38	GND
19	VDD_EXT	39	ANT
20	DTR	40	GND

3.1.2 Pin description

Table 6: Pin description

Power supply						
PIN NAME	Pin No.	I/O	DESCRIPTION	DC CHARACTERISTICS	COMMENT	
VBAT	33,34	I	Main power supply of module: VBAT=3.3V~4.2V	Vmax= 4.2V Vmin=3.3V Vnorm=4.0V	Make sure that supply sufficient current in a transmitting burst which typically rises	
VRTC	32	I/O	Power supply for RTC when VBAT is not supplied for the system. Charge for backup battery or golden capacitor when the VBAT is supplied.	VImax=3.3V VImin=1.5V VInorm=2.8V VOmax=2.85V VOmin=2.6V VOnorm=2.8V Iout(max)= 1mA Iin=2.6~5 uA	If unused, keep this pin open.	
VDD_EXT	19	0	Supply 2.8V voltage for external circuit.	Vmax=2.9V Vmin=2.7V Vnorm=2.8V Imax=20mA	 If unused, keep this pin open. Recommended to add a 	
GND	1,31,35,36, 37,38,40		Ground			
Turn on/off						
PWRKEY	10	I	Power on/off key. PWRKEY should be pulled down for a moment to turn on or turn off the system.	VILmax=0.1×VBAT VIHmin=0.6×VBAT VImax=VBAT	Pulled up to VBAT internally.	
Emergency shutdo	own					

					KingcomTek	
EMERG OFF	11	Ι	Emergency off. Pulled down for at least 20ms, which will turn off the module in case of emergency. Use it only when normal shutdown through PWRKEY or AT command cannot perform well.	VILmax=0.4V VIHmin=2.2V V _{open} max=2.8V	Open drain/collector driver required in cellular device application. If unused, keep this pin open.	
Module indicato	r					
STATUS	12	О	Indicate module's operating status. High level indicates module is power-on and low level indicates power-down.	VOHmin=0.85× VBAT VOLmax=0.15× VBAT	If unused, keep this pin open.	
Audio interface						
MIC1P	4		Channel 1 positive and		If unused, keep these pins	
MIC1N	5	Ι	negative voice-band input		open.	
SPK1P	7		Channel 1 positive and		If unused, keep these pins	
SPK1N	6	0	negative voice-band output		open.	
MIC2P	2	I	Channel 2 positive and		If unused, keep these pins	
MIC2N	3		negative voice-band input	it open.		
LOUDSPKN	8 9	0	negative voice-band output		open.	
Net status indica	tor		-			
NETLIGHT	13	О	Network status indication	VOHmin=0.85× VBAT VOLmax=0.15× VBAT	If unused, keep this pin open.	
Main UART por	t					
DTR	20	Ι	Data terminal ready	VILmin=-0.3V	If only use TXD, RXD and	
RXD	21	Ι	Receive data	VILmax=0.25×V	GND to communicate,	
TXD	22	0	Transmit data	DD_EXT	recommended keeping	
CTS	23	0	Clear to send	VIHmin=0.75×V	BTS Bull down BTS	
RTS	24		Request to send	DD_EAT VIHmax=	KIS. Pull dowil KIS.	
DCD		0	Ring indicator	VDD_EXT+0.3 V		
RI	26	Ο		VOHmin=0.85× VDD_EXT VOLmax=0.15× VDD_EXT		
Module indicator						
DBG_RXD	14	I	UART interface for debugging only.	VILmin=-0.3V VILmax=0.25×V DD_EXT VIHmin=0.75×V DD_EXT VIHmay=	If unused, keep this pin open. If unused, keep this pin open.	

KingcomTek

DBG_TXD	15	0				
SIM interface						
SIM_VDD	27	0	Power supply for card SIM	The voltage can be selected by software automatically. Either1.8V or 3V	 All signals of SIM interface should be protected against ESD with a TVS diode array. Maximum trace length is 	
SIM_RST	28	0	SIM reset	3V: VOLmax=0.36V VOHmin=0.9×SI M_VDD 1.8V: VOLmax=0.2×S IM_VDD VOHmin=0.9×SI M_VDD	pad to SIM card holder.	
SIM_DATA	29	I/O	SIM data	3V: VOLmax=0.4V VOHmin=SIM_ VDD-0.4V 1.8V: VOLmax=0.15× SIM_VDD VOHmin= SIM_VDD-0.4V		
SIM_CLK	30	0	SIM clock	3V: VOLmax=0.4V VOHmin=0.9×SI M_VDD 1.8V: VOLmax=0.12× SIM_VDD VOHmin= 0.9×SIM_VDD		
RF interface						
RF_ANT	39	I/O	RF antenna pad	Impedance of 50Ω		

3.2 Power supply

3.2.1 Power features of module

The power supply is one of the key issues in the designing GSM terminals. Due to the 577us radio burst emission in GSM every 4.615ms, power supply must be able to deliver high current peaks in a burst period. During these peaks, drops on the supply voltage must not exceed minimum working voltage of module.

For the G3524 module, the max current consumption could reach to 2A during a transmit burst. It will cause a large voltage drop on the VBAT. In order to ensure stable operation of the module, it is recommended that the max voltage drop during the transmit burst does not exceed 400mV.

3.2.2 Decrease supply voltage drop

The power supply rang of the module is 3.3V to 4.2V. Make sure that the input voltage will never drop below 3.3V even in a transmitting burst. If the power voltage drops below 3.3V, the module could turn off automatically. For better power performance, it is recommended to place a 100 µF tantalum capacitor with low ESR (ESR= 0.7Ω) and ceramic capacitors 100nF, 33pF and 10 pF near the VBAT pin. The reference circuit is illustrated in Figure 4.

The VBAT route should be wide enough to ensure that there is not too much voltage drop occurring during transmit burst. The width of trace should be no less than 2mm and the principle of the VBAT route is the longer route, the wider trace.

3.2.3 Reference design for power supply

The power design for the module is very important, since the performance of power supply for the module largely depends on the power source. The power supply is capable of providing the sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested to use a LDO as module's power supply. If there is a big voltage difference between the input source and the desired output (VBAT), a switcher power converter is prefer to use as a power supply.

The following figure shows a reference design for +5V input power source. The designed output for the power supply is 4.16V and the maximum load current is 3A. In addition, in order to get a stable output voltage, a zener diode is placed close to the pins of VBAT. As to the zener diode, it is suggested to use a zener diode which reverse zener voltage is 5.1V and dissipation power is more than 1 Watt.

3.2.4 Monitor power supply

To monitor the supply voltage, the "AT+CBC" command can be used which includes three parameters: charging status, remaining battery capacity and voltage value (in mV). It returns the 0-100 percent of battery capacity and actual value measured between VBAT and GND. The voltage is automatically measured in period of 5s. The displayed voltage (in mV) is averaged over the last measuring period before the "AT+CBC" command is executed.

3.3 Power on and down scenarios

3.3.1 Power on the module using the PWRKEY pin

The module can be turned on through the PWRKEY pin. Customer can turn on the module by driving the pin PWRKEY to a low level voltage and after STATUS pin outputs a high level, PWRKEY pin can be released. Customer can monitor the level of the STATUS pin to judge whether the module is power-on or not.

An open collector driver circuit is suggested to control the PWRKEY. A simple reference circuit is illustrated in

Figure 4: Turn on the module using driving circuit

The other way to control the PWRKEY is using a button directly. A TVS component is indispensable to be placed nearby the button for ESD protection. When pressing the key, electrostatic strike may generate from finger. A reference circuit is showed in Figure 7.

Figure 5: Turn on the module using keystroke

The power-on scenarios is illustrated as the following figure.

① Make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is recommended 30ms.

2 Keep the EMERG OFF pin open if not used.

Note: Customer can monitor the voltage level of the STATUS pin to judge whether the module is power-on. After the STATUS pin goes to high level, PWRKEY can be released. If the STATUS pin is ignored, pull the PWRKEY pin to low level for more than 2 seconds to turn on the module.

3.3.2 Power down

3.3.2.1. Power down module using the PWRKEY pin

Customer's application can turn off the module by driving the PWRKEY to a low level voltage for certain time. The power-down scenarios is illustrated in Figure 7.

The power-down procedure causes the module to log off from the network and allows the software to save important data before completely disconnecting the power supply, thus it is a safe way.

After that moment, no further AT commands can be executed. Then the module enters the POWER DOWN mode, only the RTC is still active. The POWER DOWN mode can also be indicated by the STATUS pin, which is a low level voltage in this mode.

Figure 7: Timing of turning off the module

3.3.2.2 Emergency shutdown using EMERG_OFF pin

The module can be shut down by driving the pin EMERG_OFF to a low level voltage over 20ms and then releasing it. The EMERG_OFF line can be driven by an Open Drain / Collector driver or a button. The circuit is illustrated as the following figures.

Figure 8: Reference circuit for EMERG_OFF by using driving circuit

Figure 9: Reference circuit for EMERG_OFF by using button

Be cautious to use the pin EMERG_OFF. It should only be used under emergent situation. For instance, if the module is unresponsive or abnormal, the pin EMERG_OFF could be used to shut down the system. Although turning off the module by EMERG_OFF is fully tested and nothing wrong detected, this operation is still a big risk as it could cause destroying of the code or data area of the flash memory in the module. Therefore, it is recommended that PWRKEY or AT command should always be the preferential way to turn off the system.

0

3.4 Restart

Customer's application can restart the module by driving the PWRKEY to a low level voltage for certain time, which is similar to the way of turning on module. Before restarting the module, at least 500ms should be delayed after detecting the low level of STATUS. The restart timing is illustrated as the following figure.

Figure 10: Timing of restarting system

The module can also be restarted by the PWRKEY after emergency shutdown.

Figure 11: Timing of restarting system after emergency shutdown

3.5 Power saving

Upon system requirement, there are several actions to drive the module to enter low current consumption status. For example, DTR hardware interface signal can be used to lead system to SLEEP mode.

mchina

3.5.1 Sleep mode

Customer's application can control the module to enter or exit from the SLEEP mode through pin DTR. When DTR is set to high level, and there is no on-air or hardware interrupt such as GPIO interrupt or data on UART port, the module will enter SLEEP mode automatically. In this mode, the module can still receive voice, SMS or GPRS paging from network but the UART port is not accessible.

3.5.2 Wake up the module from SLEEP mode

When the module is in the SLEEP mode, the following methods can wake up the module.

If the DTR Pin is set low, it would wake up the module from the SLEEP mode. The UART port will be active within 20ms after DTR is changed to low level.

Receiving a voice or data call from network wakes up module.

Receiving an SMS from network wakes up the module.

Note: DTR pin should be held low level during communication between the module and DTE.

-

3.6 Summary of state transitions

rabic 7. Summary	able 7. Summary of state transition							
Current mode		Next n	node					
	Power down	Normal mode	Sleep mode					
Power down		Use PWRKEY						
Normal mode	use PWRKEY pin, or use EMERG_OFF pin		pull DTR up					
Sleep mode	Use PWRKEY pin, or use EMERG OFF pin	Pull DTR down or incoming call or SMS or GPRS						

Table 7: Summary of state transition

3.7 RTC backup

The RTC (Real Time Clock) can be supplied by an external capacitor or battery (rechargeable or non-chargeable) through the pin VRTC. A 1.5 K resistor has been integrated in the module for current limiting. A coin-cell battery or a super-cap can be used to backup power supply for RTC.

The following figures show various sample circuits for RTC backup.

Figure 12: RTC supply from non-chargeable battery

Figure 14: RTC supply from capacitor

3.8 Serial interfaces

The module provides two serial ports: UART and Debug Port. The module is designed as a DCE(Data Communication Equipment), following the traditional DCE-DTE (Data Terminal Equipment) connection. Autobauding function supports baud rate from 4800bps to 115200bps.

The UART Port: TXD: Send data to RXD of DTE RXD: Receive data from TXD of DTE RTS: Requests to send CTS: Clear to send

DTR: DTE is ready and inform DCE (this pin can wake the module up)

RI: Ring indicator (when the call, SMS, data of the module are coming, the module will output signal to inform DTE)

DCD: Data carrier detection (the valid of this pin demonstrates the communication link is set up)

The Debug Port

DBG_TXD: Send data to the COM port of a debugging computer

DBG_RXD: Receive data from the COM port of a debugging computer

The logic levels are described in the following table.

Parameter	Min	Max	Unit
VIL	0	0.25×VDD_EXT	V
V _{IH}	0.75×VDD_EXT	VDD_EXT+0.3	V
Vol	0	0.15×VDD_EXT	V
V _{OH}	0.85×VDD_EXT	VDD_EXT	V

Table 8: Logic levels of the UART interface

Table 9: Logic levels of the UART interface

Parameter	Min	Max	
Dahua Dart	DBG_RXD	14	Receive data of the debug port
Debug Poli	DBG_TXD	15	Transmit data of the debug port
	DTR	20	Data terminal ready
	RXD	21	Receive data of the UART port
	TXD	22	Transmit data of the UART port
UART Port	CTS	23	Clear to send
	RTS	24	Request to send
	DCD	25	Data carrier detection
	RI	26	Ring indicator

3.8.1 UART Port

3.8.1.1 The features of UART Port.

Seven lines on UART interface

Contain data lines TXD and RXD, hardware flow control lines RTS and CTS, other control lines DTR, DCD and RI

Used for AT command, GPRS data, etc. Multiplexing function is supported on the UART Port. So far only the basic mode of multiplexing is available.

Support the communication baud rates as the following: 4800,9600,14400,19200,28800,38400,57600,115200.

The default setting is autobauding mode. Support the following baud rates for autobauding function: 4800, 9600,

19200, 38400, 57600, 115200.

Autobauding allows the module to detect the baud rate by receiving the string "AT" or "at" from the host or PC automatically, which gives module flexibility without considering which baud rate is used by the host controller. Autobauding is enabled by default. To take advantage of the autobauding mode, special attention should be paid according to the following requirements:

3.8.1.2. The connection of UART

The connection between module and host via UART port is very flexible. Three connection styles are illustrated as below.

UART Port connection is shown as below when it is applied in modulation-demodulation.

Figure 17: Connection of three lines UART port

UART Port with hardware flow control is shown as below. This connection will enhance the reliability of the mass data communication.

Figure 18: Connection of UART port associated hardware flow control

3.8.1.3. Firmware upgrade

The TXD, RXD can be used to upgrade software. The PWRKEY pin must be pulled down before the firmware upgrades. Please refer to the following figures for firmware upgrade.

Figure 19: Connection of firmware upgrade

3.8.2 UART Port

Two lines: DBG_TXD and DBG_RXD

It outputs log information automatically.

Debug Port is only used for software debugging and its baud rate must be

configured as 460800bps.

Figure 20: Connection of software debug

3.8.3 UART Application

The reference design of 3.3V level match is shown as below. When the peripheral MCU/ARM system is 3V, the divider resistor should be changed from 5.6K to 10K.

Figure 21: 3.3V level match circuit

The reference design of 5V level match is shown as below. The construction of dotted line can refer to the construction of solid line. Please pay attention to direction of connection. Input dotted line of module should refer to input solid line of the module. Output dotted line of module should refer to output solid line of the module.

KingcomTek

Figure 22: 5V level match circuit

The following picture is an example of connection between module and PC. A RS_232 level shifter IC or circuit must be inserted between module and PC, since UART ports do not support the RS_232 level, while support the CMOS level only.

Figure 23: RS232 level match circuit

3.9 Audio interfaces

The module provides two analogy input channels and two analogy output channels.

Table 10: Pin definition of Audio interface

Interface	Name	Pin	Function
	MIC1P	4	Channel 1 Microphone positive input
	MIC1N	5	Channel 1 Microphone negative input
AINI/AOUTI	SPK1N	6	Channel 1 Audio negative output
	SPK1P	7	Channel 1 Audio positive output
	MIC2P	2	Channel 2 Microphone positive input
	MIC2N	3	Channel 2 Microphone negative input
AIN2/AOUT2	AGND	1	Cooperate with LOUDSPKP
	LOUDSPKP	9	Channel 2 Audio positive output
	LOUDSPKN	8	Channel 2 Audio negative output

AIN1 and AIN2 can be used for input of microphone and line. An electret microphone is usually used. AIN1 and AIN2 are both differential input channels.

AOUT1 is used for output of the receiver. This channel is typically used for a receiver built into a handset. AOUT1 channel is a differential channel. If it is used as a speaker, an amplifier should be employed.

AOUT2 is used for loud speaker output as it is embedded an amplifier of class AB whose maximum drive power is 800mW. AOUT2 is a differential channel.

AOUT2 also can be used for output of earphone, which can be used as a single-ended channel. LOUDSPKP and AGND can establish a pseudo differential mode.

AOUT2 also can be used for output of earphone, which can be used as a single-ended channel. LOUDSPKP and AGND can establish a pseudo differential mode.

Item	Condition	Min	Туре	Max	Unit
PMS power	80hm load VBAT=4.2V THD+N=1%		800		mW
Kivis power	80hm load VBAT=3.7V THD+N=1%		700		mW
Gain adjustment range		0		18	dB
Gain adjustment steps			3		dB

Table	11: AOUT2	output	charact	teristics
		040040		

1

3.9.1 Decrease TDD noise and other noise

The 33pF capacitor is applied for filtering out 900MHz RF interference when the module is transmitting at GSM900MHz. Without placing this capacitor, TDD noise could be heard. Moreover, the 10pF capacitor here is for filtering out 1800MHz RF interference. However, the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, customer would have to discuss with its capacitor vendor to choose the most suitable capacitor for filtering out GSM850MHz, GSM900MHz, DCS1800MHz and CS1900MHz separately.

The severity degree of the RF interference in the voice channel during GSM transmitting period largely depends on the application design. In some cases, GSM900 TDD noise is more severe; while in other cases, DCS1800 TDD noise is more obvious. Therefore, customer can have a choice based on test results. Sometimes, even no RF filtering capacitor is required.

The capacitor which is used for filtering out RF noise should be close to the audio interfaces. Audio alignment should be as short as possible.

In order to decrease radio or other signal interference, the position of RF antenna should be kept away from audio interface and audio alignment. Power alignment and audio alignment should not be parallel, and power alignment should be far away from audio alignment.

The differential audio traces have to be placed according to the differential signal layout rule.

3.9.2 Microphone interfaces design

AIN1/IN2 channels come with internal bias supply for external electret microphone. A reference circuit is shown in Figure 24.

.

inch

Figure 24: Microphone interface design of AIN1&AIN2

3.9.3 Receiver interface design

Figure 26: Earphone interface design

3.9.5 Loud speaker interface design

Figure 27: Loud speaker interface design

3.9.6 Audio characteristics

Parameter	Min	Тур	Max	unit
Working Voltage	1.2	1.5	2.0	V
Working Current	200		500	uA
External Microphone Load Resistance		2.2		k Ohm

Table 13: Typical speaker characteristics

Parameter			Min	Тур	Max	unit
	Single Ended	Load Resistance	28	32		Ohm
Normal Output(AOUT1)		Ref level	0		2.4	Vpp
	Differential	Load Resistance	28	32		Ohm
		Ref level	0		4.8	Vpp
	Single Ended	Load Resistance	0	8		Ohm
Auxiliary Output(AOUT2)		Ref level	0		2×VBAT	Vpp
	Differential	Load Resistance				Ohm
		Ref level	0		4×VBAT	Vpp

3.10 SIM card interface

3.10.1 SIM card application

The SIM interface supports the functionality of the GSM Phase 1 specification and also supports the functionality of the new GSM Phase 2+ specification for FAST 64 kbps SIM card, which is intended for use with a SIM application Tool-kit.

The SIM interface is powered from an internal regulator in the module. Both 1.8V and 3.0V SIM Cards are supported. com

Name	Pin	Function
SIM_VDD	27	Supply power for SIM Card. Automatic detection of SIM card voltage. 3.0V±10% and 1.8V±10%. Maximum supply current is around 10mA.
SIM_RST	28	SIM Card reset
SIM_DATA	29	SIM Card data I/O
SIM_CLK	30	SIM Card clock
SIM_GND	31	SIM Card ground

Table 14: Pin definition of the SIM interface

The reference circuit using a 6-pin SIM card holder is illustrated as the following figure.

Figure 28: Reference circuit of the 6 pins SIM card

The following design rules can optimize the SIM interface performance and protect the SIM card effectively. The rules should be taken into account in designing the circuit.

Place the SIM card holder close to module as close as possible. Ensure the trace length of SIM signals keeps less than 200mm.

Keep the SIM signals far away from VBAT power and RF trace.

The width of SIM VDD and SIM GND trace is not less than 0.5mm. Place a bypass capacitor close to SIM

card power pin. The value of capacitor is less than 1uF.

To avoid possible cross-talk from the SIM CLK signal to the SIM DATA signal be careful that both traces are not placed closely next to each other. The traces of SIM_CLK, SIM_DATA and SIM_RST are recommended to be around with GND independently. gcom

3.10.2 6 Pin SIM cassette

For 6-pin SIM card holder, it is recommended to use Amphenol C707 10M006 512 2. Please visit http://www.amphenol.com for more information.

KingcomTek

Table 15. Din description	of Amphanal SIM aand halden	
Table 15: Fill description	of Amphenol Silvi caru noider	

Table 15: Pin description of Amphenol SIM card holder			
Pin	Name	Function	
C1	SIM_VDD	SIM Card Power Supply	
C2	SIM_RST	SIM Card Reset	
C3	SIM_CLK	SIM Card Clock	
C5	GND	Ground	
C6	VPP	Not Connect	
C7	SIM_DATA	SIM Card data I/O	

4 Antenna interface

The Pin 39 is the RF antenna pad. The RF interface has an impedance of 50Ω .

Name	Pin	Function	
GND	37	ground	
GND	38	ground	
RF_ANT	39	RF antenna pad	
GND	40	ground	

Table 16: Pin definition of the Antenna interface

4.1 RF reference design

Figure 30: Reference circuit of RF

G3524 provides an RF antenna PAD for customer's antenna connection. The RF trace in host PCB connected to the module RF antenna pad should be micro-strip line or other types of RF trace, whose characteristic impendence should be close to 50Ω . G3524 comes with grounding pads which are next to the antenna pad in order to give a better grounding.

To minimize the loss on the RF trace and RF cable, take design into account carefully. It is recommended that the insertion loss should meet the following requirements:

GSM850/EGSM900 is <1dB. DCS1800/PCS1900 is <1.5dB.

4.2 RF output power

Table 17: The module conducted RF output power

Frequency	Max	Min
GSM850	33dBm±2dB	5dBm±5dB
EGSM900	33dBm±2dB	5dBm±5dB
DCS1800	33dBm±2dB	5dBm±5dB
PCS1900	33dBm±2dB	5dBm±5dB

Note: In GPRS 4 slots TX mode, the max output power is reduced by 2.5dB. This design conforms to the GSM specification as described in section 13.16 of 3GPP TS 51.010-1.

4.3 RF receiving sensitivity

Frequency	Receive sensitivity	
GSM850	<-107dBm	
EGSM900	<-107dBm	
DCS1800	<-107dBm	
PCS1900	<-107dBm	

4.4 Operating frequencies				
Frequency	Receive	Transmit	ARFCH	
GSM850	869~894MHz	824~849MHz	128~251	
EGSM900	925~960MHz	880~915MHz	0~124,975~1023	
DCS1800	1805~1880MHz	1710~1785MHz	512~885	
PCS1900	1930~1990MHz	1850~1910MHz	512~810	

5 Mechanical dimensions

This chapter describes the mechanical dimensions of the module.

5.1 Mechanical dimensions of module

Figure 32: G3524 bottom dimensions (Unit: mm)

5.2 Footprint of recommendation

Figure 33: Footprint of recommendation (Unit: mm)

Note:

1. The blue pads are used for reserved pins customs can design the PCB decal without them.

2. To maintain the module, keep about 3mm away between the module and other components in host PCB.

5.3 Top view of the module

Figure 34: Top view of the module

5.4 Bottom view of the module

Add:

Kingcom Technology Limited 418 Guiping Road , Xuhui District, Shanghai, Room 703 Tel :021-31756099 Fax:021-31756089 E-mail: <u>support@kingcomchina.com</u>

N.kingcomchina.com