Peter Harrington

/ll MANNING

Machine Learning in Action

Machine Learning in Action

PETER HARRINGTON

MANNING
Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 261

Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

/l/l Manning Publications Co.Development editor:Jeff Bleiel
20 Baldwin Road Technical proofreaders: Tricia Hoffman, Alex Ott
PO Box 261 Copyeditor: Linda Recktenwald
Shelter Island, NY 11964 Proofreader: Maureen Spencer
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781617290183
Printed in the United States of America

12345678910 - MAL- 17 16 15 14 13 12

To Joseph and Milo

brief contents

PART 1 (CLASSIFICATION .eeeeceereecescescscesoescscescsscscessssessesssssssessnseseesl

U2 IOl S N CU o

Machine learning basics 3

Classifying with k-Nearest Neighbors 18

Splitting datasets one feature at a time: decision trees 37
Classifying with probability theory: naive Bayes 61
Logistic regression 83

Support vector machines 101

Improving classification with the AdaBoost
meta-algorithm 129

PART 2 FORECASTING NUMERIC VALUES WITH REGRESSION c.vveeseeesees 151

8 = Predicting numeric values: regression 153

9 = Tree-based regression 179

PART 3 UNSUPERVISED LEARNING ceeeeteecescescsccscescescssescscessescscescese 20D

10 = Grouping unlabeled items using k-means clustering 207

11

= Association analysis with the Apriori algorithm 224

12 = Efficiently finding frequent itemsets with FP-growth 248

viii BRIEF CONTENTS

PART 4 ADDITIONAL TOOLS teeteecescescscescescscessescscescsssssasssssssessasens 267

13 = Using principal component analysis to simplify data 269

14 = Simplifying data with the singular value
decomposition 280

15 = Big data and MapReduce 299

contents

preface xvii

acknowledgments xix

about this book xxi

about the author xxv

about the cover illustration xxvi

PART 1 CLASSIFICATION oooooootootoooooooooooooo'oo'oooooootootooooooooooo1.

Machine learning basics 3

1.1

1.2
1.3
1.4
1.5
1.6

1.7
1.8

What is machine learning? 5

Sensors and the data deluge 6 = Machine learning will be more
important in the future 7

Key terminology 7

Key tasks of machine learning 10

How to choose the right algorithm 11

Steps in developing a machine learning application 11
Why Python? 13

Executable pseudo-code 13 = Python is popular 13 = What
Python has that other languages don’t have 14 = Drawbacks 14

Getting started with the NumPy library 15
Summary 17

CONTENTS

Classifying with k-Nearest Neighbors 18

2.1

Classifying with distance measurements 19

Prepare: importing data with Python 21 = Putting the RNN classification
algorithm into action 23 = How to test a classifier 24

2.2 Example: improving matches from a dating site with kNN 24

Prepare: parsing data from a text file 25 = Analyze: creating scatter plots
with Matplotlib 27 = Prepare: normalizing numeric values 29 = Test:
testing the classifier as a whole program 31 = Use: putting together a
useful system 32

2.3 Example: a handwriting recognition system 33

Prepare: converting images into test vectors 33 = Test: RNN on
handwritten digits 35

24 Summary 36

Splitting datasets one feature at a time: decision trees 37

3.1

3.2

3.3

Tree construction 39

Information gain 40 = Splitting the dataset 43 = Recursively
building the tree 46

Plotting trees in Python with Matplotlib annotations 48
Matplotlib annotations 49 = Constructing a tree of annotations 51
Testing and storing the classifier 56

Test: using the tree for classification 56 = Use: persisting the
decision tree 57

3.4 Example: using decision trees to predict contact lens type 57

3.5

Summary 59

Classifying with probability theory: naive Bayes 61

4.1
4.2
4.3
4.4
4.5

4.6

Classifying with Bayesian decision theory 62
Conditional probability 63

Classifying with conditional probabilities 65
Document classification with naive Bayes 65
Classifying text with Python 67

Prepare: making word vectors from text 67 = Train: calculating
probabilities from word vectors 69 = Test: modifying the classifier for real-
world conditions 71 = Prepare: the bag-of-words document model 73

Example: classifying spam email with naive Bayes 74

Prepare: tokenizingtext 74 = Test: cross validation with naive Bayes 75

CONTENTS xi

4.7 Example: using naive Bayes to reveal local attitudes from
personal ads 77

Collect: importing RSS feeds 78 » Analyze: displaying locally used
words 80

4.8 Summary 82

Logistic regression 83

5.1 Classification with logistic regression and the sigmoid
function: a tractable step function 84

5.2 Using optimization to find the best regression coefficients 86

Gradient ascent 86 = Train: using gradient ascent to find the best
parameters 88 = Analyze: plotting the decision boundary 90
Train: stochastic gradient ascent 91

5.3 Example: estimating horse fatalities from colic 96

Prepare: dealing with missing values in the data 97 = Test:
classifying with logistic regression 98

5.4 Summary 100

Support vector machines 101
6.1 Separating data with the maximum margin 102
6.2 Finding the maximum margin 104

Framing the optimization problem in terms of our classifier 104
Approaching SVMs with our general framework 106

6.3 Efficient optimization with the SMO algorithm 106

Platt’s SMO algorithm 106 = Solving small datasets with the
simplified SMO 107

6.4 Speeding up optimization with the full Platt SMO 112
6.5 Using kernels for more complex data 118

Mapping data to higher dimensions with kernels 118 = Theradial
bias function as a kernel 119 = Using a kernel for testing 122

6.6 Example: revisiting handwriting classification 125
6.7 Summary 127

7 Improving classification with the AdaBoost meta-algorithm 129
7.1 Classifiers using multiple samples of the dataset 130

Building classifiers from randomly resampled data: bagging 130
Boosting 131

7.2 Train: improving the classifier by focusing on errors 131

7.3
7.4
7.5
7.6
7.7

7.8

CONTENTS

Creating a weak learner with a decision stump 133
Implementing the full AdaBoost algorithm 136
Test: classifying with AdaBoost 139

Example: AdaBoost on a difficult dataset 140
Classification imbalance 142

Alternative performance metrics: precision, recall, and ROC 143
Manipulating the classifier’s decision with a cost function 147
Data sampling for dealing with classification imbalance 148

Summary 148

PART 2 FORECASTING NUMERIC VALUES WITH REGRESSION .151

Predicting numeric values: regression 153

8.1
8.2
8.3
8.4

8.5
8.6

8.7

Finding bestfit lines with linear regression 154
Locally weighted linear regression 160

Example: predicting the age of an abalone 163
Shrinking coefficients to understand our data 164

Ridge regression 164 = The lasso 167 = Forward stagewise
regression 167

The bias/variance tradeoff 170
Example: forecasting the price of LEGO sets 172

Collect: usingthe Googleshopping APl 173 = Train: buildingamodel 174
Summary 177

Tree-based regression 1 79

9.1
9.2
9.3

94
9.5
9.6

9.7

9.8

Locally modeling complex data 180
Building trees with continuous and discrete features 181
Using CART for regression 184
Building the tree 184 = Executing the code 186
Tree pruning 188
Prepruning 188 = Postpruning 190
Model trees 192
Example: comparing tree methods to standard regression 195
Using Tkinter to create a GUI in Python 198
Building a GUIin Tkinter 199 = Interfacing Matplotlib and Tkinter 201

Summary 203

CONTENTS xiii

PART 3 UNSUPERVISED LEARNING seeeeeseescescescescescescescesces 20D

1 Grouping unlabeled items using k-means clustering 207
10.1 The k-means clustering algorithm 208
10.2 Improving cluster performance with postprocessing 213
10.3 Bisecting k-means 214
10.4 Example: clustering points on amap 217

The Yahoo! PlaceFinder API 218 = Clustering geographic
coordinates 220

10.5 Summary 223

1 Association analysis with the Apriori algorithm 224
11.1 Association analysis 225

11.2 The Apriori principle 226

11.3 Finding frequent itemsets with the Apriori algorithm 228
Generating candidate itemsels 229 = Putling together the full
Apriori algorithm 231

11.4 Mining association rules from frequent item sets 233

11.5 Example: uncovering patterns in congressional voting 237

Collect: build a transaction data set of congressional voting
records 238 = Test: association rules from congressional voting
records 243

11.6 Example: finding similar features in poisonous
mushrooms 245

11.7 Summary 246

1 Efficiently finding frequent itemsets with FP-growth 248
12.1 FP-trees: an efficient way to encode a dataset 249
12.2 Build an FP-tree 251
Creating the FP-tree data structure 251 = Constructing the FP-tree 252
12.3 Mining frequent items from an FP-tree 256

Extracting conditional pattern bases 257 = Creating conditional
FP-trees 258

12.4 Example: finding co-occurring words in a Twitter feed 260
12.5 Example: mining a clickstream from a news site 264
12.6 Summary 265

Xiv CONTENTS

PART 4 ADDITIONAL TOOLS «eeveeercscscscscscscscscscscscscscscsescs 207

1 Using principal component analysis to ssmplify data 269
13.1 Dimensionality reduction techniques 270
13.2 Principal component analysis 271
Moving the coordinate axes 271 = Performing PCA in NumPy 273

13.3 Example: using PCA to reduce the dimensionality of
semiconductor manufacturing data 275

13.4 Summary 278

1 Simplifying data with the singular value decomposition 280
14.1 Applications of the SVD 281
Latent semantic indexing 281 = Recommendation systems 282
14.2 Matrix factorization 283
14.3 SVD in Python 284
14.4 Collaborative filtering—based recommendation engines 286

Measuring similarity 287 = Item-based or user-based similarity? 289
Evaluating recommendation engines 289

14.5 Example: a restaurant dish recommendation engine 290

Recommending untasted dishes 290 = Improving recommendations with
the SVD 292 = Challenges with building recommendation engines 295

14.6 Example: image compression with the SVD 295
14.7 Summary 298

1 Big data and MapReduce 299
15.1 MapReduce: a framework for distributed computing 300
15.2 Hadoop Streaming 302

Distributed mean and variance mapper 303 = Distributed mean
and variance reducer 304

15.3 Running Hadoop jobs on Amazon Web Services 305

Services available on AWS 305 = Getting started with Amazon
Web Services 306 = Running a Hadoop job on EMR 307

15.4 Machine learning in MapReduce 312
15.5 Using mrjob to automate MapReduce in Python 313

Using mrjob for seamless integration with EMR 313 = The anatomy of a
MapReduce script in mrjob 314

15.6

15.7
15.8

appendix A
appendix B
appendix C
appendix D

CONTENTS

Example: the Pegasos algorithm for distributed SVMs
The Pegasos algorithm 317 = Training: MapReduce support

vector machines with mrjob 318

Do you really need MapReduce?
Summary 323

Getting started with Python 325
Linear algebra 335

Probability refresher 341
Resources 345

index 347

322

316

XV

preface

After college I went to work for Intel in California and mainland China. Originally my
plan was to go back to grad school after two years, but time flies when you are having
fun, and two years turned into six. I realized I had to go back at that point, and I
didn’t want to do night school or online learning, I wanted to sit on campus and soak
up everything a university has to offer. The best part of college is not the classes you
take or research you do, but the peripheral things: meeting people, going to seminars,
joining organizations, dropping in on classes, and learning what you don’t know.
Sometime in 2008 I was helping set up for a career fair. I began to talk to someone
from a large financial institution and they wanted me to interview for a position mod-
eling credit risk (figuring out if someone is going to pay off their loans or not). They
asked me how much stochastic calculus I knew. At the time, I wasn’t sure I knew what
the word stochastic meant. They were hiring for a geographic location my body
couldn’t tolerate, so I decided not to pursue it any further. But this stochastic stuff
interested me, so I went to the course catalog and looked for any class being offered
with the word “stochastic” in its title. The class I found was “Discrete-time Stochastic
Systems.” I started attending the class without registering, doing the homework and
taking tests. Eventually I was noticed by the professor and she was kind enough to let
me continue, for which I am very grateful. This class was the first time I saw probability
applied to an algorithm. I had seen algorithms take an averaged value as input before,
but this was different: the variance and mean were internal values in these algorithms.
The course was about “time series” data where every piece of data is a regularly spaced
sample. I found another course with Machine Learning in the title. In this class the

xvii

xviii

PREFACE

data was not assumed to be uniformly spaced in time, and they covered more algo-
rithms but with less rigor. I later realized that similar methods were also being taught
in the economics, electrical engineering, and computer science departments.

In early 2009, I graduated and moved to Silicon Valley to start work as a software
consultant. Over the next two years, I worked with eight companies on a very wide
range of technologies and saw two trends emerge which make up the major thesis for
this book: first, in order to develop a compelling application you need to do more
than just connect data sources; and second, employers want people who understand
theory and can also program.

Alarge portion of a programmer’s job can be compared to the concept of connect-
ing pipes—except that instead of pipes, programmers connect the flow of data—and
monstrous fortunes have been made doing exactly that. Let me give you an example.
You could make an application that sells things online—the big picture for this would
be allowing people a way to post things and to view what others have posted. To do this
you could create a web form that allows users to enter data about what they are selling
and then this data would be shipped off to a data store. In order for other users to see
what a user is selling, you would have to ship the data out of the data store and display
it appropriately. I'm sure people will continue to make money this way; however to
make the application really good you need to add a level of intelligence. This intelli-
gence could do things like automatically remove inappropriate postings, detect fraud-
ulent transactions, direct users to things they might like, and forecast site traffic. To
accomplish these objectives, you would need to apply machine learning. The end user
would not know that there is magic going on behind the scenes; to them your applica-
tion “just works,” which is the hallmark of a well-built product.

An organization may choose to hire a group of theoretical people, or “thinkers,”
and a set of practical people, “doers.” The thinkers may have spent a lot of time in aca-
demia, and their day-to-day job may be pulling ideas from papers and modeling them
with very high-level tools or mathematics. The doers interface with the real world by
writing the code and dealing with the imperfections of a non-ideal world, such as
machines that break down or noisy data. Separating thinkers from doers is a bad idea
and successful organizations realize this. (One of the tenets of lean manufacturing is
for the thinkers to get their hands dirty with actual doing.) When there is a limited
amount of money to be spent on hiring, who will get hired more readily—the thinker
or the doer? Probably the doer, but in reality employers want both. Things need to get
built, but when applications call for more demanding algorithms it is useful to have
someone who can read papers, pull out the idea, implement it in real code, and iterate.

I didn’t see a book that addressed the problem of bridging the gap between think-
ers and doers in the context of machine learning algorithms. The goal of this book is
to fill that void, and, along the way, to introduce uses of machine learning algorithms
so that the reader can build better applications.

acknowledgments

This is by far the easiest part of the book to write...

First, I would like to thank the folks at Manning. Above all, I would like to thank
my editor Troy Mott; if not for his support and enthusiasm, this book never would
have happened. I would also like to thank Maureen Spencer who helped polish my
prose in the final manuscript; she was a pleasure to work with.

Next I would like to thank Jennie Si at Arizona State University for letting me
sneak into her class on discrete-time stochastic systems without registering. Also
Cynthia Rudin at MIT for pointing me to the paper “Top 10 Algorithms in Data
Mining,”! which inspired the approach I took in this book. For indirect contributions
I would like to thank Mark Bauer, Jerry Barkely, Jose Zero, Doug Chang, Wayne
Carter, and Tyler Neylon.

Special thanks to the following peer reviewers who read the manuscript at differ-
ent stages during its development and provided invaluable feedback: Keith Kim,
Franco Lombardo, Patrick Toohey, Josef Lauri, Ryan Riley, Peter Venable, Patrick
Goetz, Jeroen Benckhuijsen, Ian McAllister, Orhan Alkan, Joseph Ottinger, Fred Law,
Karsten Strgbaek, Brian Lau, Stephen McKamey, Michael Brennan, Kevin Jackson,
John Griffin, Sumit Pal, Alex Alves, Justin Tyler Wiley, and John Stevenson.

My technical proofreaders, Tricia Hoffman and Alex Ott, reviewed the technical
content shortly before the manuscript went to press and I would like to thank them

! Xindong Wu, et al., “Top 10 Algorithms in Data Mining,” Journal of Knowledge and Information
Systems 14, no. 1 (December 2007).

ACKNOWLEDGMENTS

both for their comments and feedback. Alex was a cold-blooded killer when it came to
reviewing my code! Thank you for making this a better book.

Thanks also to all the people who bought and read early versions of the manu-
script through the MEAP early access program and contributed to the Author Online
forum (even the trolls); this book wouldn’t be what it is without them.

I want to thank my family for their support during the writing of this book. I owe a
huge debt of gratitude to my wife for her encouragement and for putting up with all
the irregularities in my life during the time I spent working on the manuscript.

Finally, I would like to thank Silicon Valley for being such a great place for my wife
and me to work and where we can share our ideas and passions.

about this book

This book sets out to introduce people to important machine learning algorithms.
Tools and applications using these algorithms are introduced to give the reader an
idea of how they are used in practice today. A wide selection of machine learning
books is available, which discuss the mathematics, but discuss little of how to program
the algorithms. This book aims to be a bridge from algorithms presented in matrix
form to an actual functioning program. With that in mind, please note that this book
is heavy on code and light on mathematics.

Audience

What is all this machine learning stuff and who needs it? In a nutshell, machine
learning is making sense of data. So if you have data you want to understand, this
book is for you. If you want to get data and make sense of it, then this book is for you
too. It helps if you are familiar with a few basic programming concepts, such as
recursion and a few data structures, such as trees. It will also help if you have had an
introduction to linear algebra and probability, although expertise in these fields is
not necessary to benefit from this book. Lastly, the book uses Python, which has
been called “executable pseudo code” in the past. It is assumed that you have a basic
working knowledge of Python, but do not worry if you are not an expert in Python—
it is not difficult to learn.

xxii

ABOUT THIS BOOK

Top 10 algorithms in data mining

Data and making data-based decisions are so important that even the content of this
book was born out of data—from a paper which was presented at the IEEE Interna-
tional Conference on Data Mining titled, “Top 10 Algorithms in Data Mining” and
appeared in the Journal of Knowledge and Information Systems in December, 2007. This
paper was the result of the award winners from the KDD conference being asked to
come up with the top 10 machine learning algorithms. The general outline of this
book follows the algorithms identified in the paper. The astute reader will notice this
book has 15 chapters, although there were 10 “important” algorithms. I will explain,
but let’s first look at the top 10 algorithms.

The algorithms listed in that paper are: C4.5 (trees), k-means, support vector
machines, Apriori, Expectation Maximization, PageRank, AdaBoost, k-Nearest Neigh-
bors, Naive Bayes, and CART. Eight of these ten algorithms appear in this book, the
notable exceptions being PageRank and Expectation Maximization. PageRank, the
algorithm that launched the search engine giant Google, is not included because I felt
that it has been explained and examined in many books. There are entire books dedi-
cated to PageRank. Expectation Maximization (EM) was meant to be in the book but
sadly it is not. The main problem with EM is that it’s very heavy on the math, and when
I reduced it to the simplified version, like the other algorithms in this book, I felt that
there was not enough material to warrant a full chapter.

How the book is organized

The book has 15 chapters, organized into four parts, and four appendixes.

Part 1 Machine learning basics

The algorithms in this book do not appear in the same order as in the paper men-
tioned above. The book starts out with an introductory chapter. The next six chapters
in part 1 examine the subject of classification, which is the process of labeling items.
Chapter 2 introduces the basic machine learning algorithm: k-Nearest Neighbors.
Chapter 3 is the first chapter where we look at decision trees. Chapter 4 discusses
using probability distributions for classification and the Naive Bayes algorithm. Chap-
ter 5 introduces Logistic Regression, which is not in the Top 10 list, but introduces the
subject of optimization algorithms, which are important. The end of chapter 5 also
discusses how to deal with missing values in data. You won’t want to miss chapter 6 as it
discusses the powerful Support Vector Machines. Finally we conclude our discussion
of classification with chapter 7 by looking at the AdaBoost ensemble method. Chapter
7 includes a section that looks at the classification imbalance problem that arises when
the training examples are not evenly distributed.

Part 2 Forecasting numeric values with regression

This section consists of two chapters which discuss regression or predicting continuous
values. Chapter 8 covers regression, shrinkage methods, and locally weighted linear

ABOUT THIS BOOK xxiii

regression. In addition, chapter 8 has a section that deals with the bias-variance
tradeoff, which needs to be considered when turning a Machine Learning algorithm.
This part of the book concludes with chapter 9, which discusses tree-based regression
and the CART algorithm.

Part 3 Unsupervised learning

The first two parts focused on supervised learning which assumes you have target val-
ues, or you know what you are looking for. Part 3 begins a new section called “Unsu-
pervised learning” where you do not know what you are looking for; instead we ask
the machine to tell us, “what do these data have in common?” The first algorithm dis-
cussed is k-Means clustering. Next we look into association analysis with the Apriori
algorithm. Chapter 12 concludes our discussion of unsupervised learning by looking
at an improved algorithm for association analysis called FP-Growth.

Part 4 Additional tools

The book concludes with a look at some additional tools used in machine learning.
The first two tools in chapters 13 and 14 are mathematical operations used to remove
noise from data. These are principal components analysis and the singular value
decomposition. Finally, we discuss a tool used to scale machine learning to massive
datasets that cannot be adequately addressed on a single machine.

Examples

Many examples included in this book demonstrate how you can use the algorithms in
the real world. We use the following steps to make sure we have not made any
mistakes:

1 Get concept/algo working with very simple data
2 Getreal-world data in a format usable by our algorithm
3 Putsteps 1 and 2 together to see the results on a real-world dataset

The reason we can’t just jump into step 3 is basic engineering of complex systems—
you want to build things incrementally so you understand when things break, where
they break, and why. If you just throw things together, you won’t know if the imple-
mentation of the algorithm is incorrect or if the formatting of the data is incorrect.
Along the way I include some historical notes which you may find of interest.

Code conventions and downloads

All source code in listings or in text is in a fixed-width font like this to separate
it from ordinary text. Code annotations accompany many of the listings, highlight-
ing important concepts. In some cases, numbered bullets link to explanations that
follow the listing.

Source code for all working examples in this book is available for download from
the publisher’s website at www.manning.com/MachineLearninginAction.

XXiv

ABOUT THIS BOOK

Author Online

Purchase of Machine Learning in Action includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
MachineLearninginAction. This page provides information on how to get on the
forum once you’re registered, what kind of help is available, and the rules of con-
duct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

about the author

Peter Harrington holds Bachelor’s and Master’s degrees in Electrical Engineering. He
worked for Intel Corporation for seven years in California and China. Peter holds five
U.S. patents and his work has been published in three academic journals. He is cur-
rently the chief scientist for Zillabyte Inc. Prior to joining Zillabyte, he was a machine
learning software consultant for two years. Peter spends his free time competing in
programming competitions and building 3D printers.

XXV

about the cover illustration

The figure on the cover of Machine Learning in Action is captioned a “Man from Istria,”
which is a large peninsula in the Adriatic Sea, off Croatia. This illustration is taken
from a recent reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and
Eastern Wenda, Illyrians, and Slavs published by the Ethnographic Museum in Split,
Croatia, in 2008. Hacquet (1739-1815) was an Austrian physician and scientist who
spent many years studying the botany, geology, and ethnography of many parts of the
Austrian Empire, as well as the Veneto, the Julian Alps, and the western Balkans,
inhabited in the past by peoples of the Illyrian tribes. Hand drawn illustrations accom-
pany the many scientific papers and books that Hacquet published.

The rich diversity of the drawings in Hacquet’s publications speaks vividly of the
uniqueness and individuality of the eastern Alpine and northwestern Balkan regions
just 200 years ago. This was a time when the dress codes of two villages separated by a
few miles identified people uniquely as belonging to one or the other, and when
members of a social class or trade could be easily distinguished by what they were
wearing. Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one continent
from another and today the inhabitants of the picturesque towns and villages in the
Slovenian Alps or Balkan coastal towns are not readily distinguishable from the resi-
dents of other parts of Europe or America.

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on costumes from two centuries ago brought
back to life by illustrations such as this one.

XXVi

Part 1

Classification

rI:e first two parts of this book are on supervised learning. Supervised learn-
ing asks the machine to learn from our data when we specify a target variable.
This reduces the machine’s task to only divining some pattern from the input
data to get the target variable.

We address two cases of the targetvariable. The first case occurs when the target
variable can take only nominal values: true or false; reptile, fish, mammal, amphib-
ian, plant, fungi. The second case of classification occurs when the target variable
can take an infinite number of numeric values, such as 0.100, 42.001, 1000.743,
This case is called regression. We’ll study regression in part 2 of this book. The first
part of this book focuses on classification.

Our study of classification algorithms covers the first seven chapters of this
book. Chapter 2 introduces one of the simplest classification algorithms called
k-Nearest Neighbors, which uses a distance metric to classify items. Chapter 3
introduces an intuitive yet slightly harder to implement algorithm: decision
trees. In chapter 4 we address how we can use probability theory to build a classi-
fier. Next, chapter 5 looks at logistic regression, where we find the best parame-
ters to properly classify our data. In the process of finding these best parameters,
we encounter some powerful optimization algorithms. Chapter 6 introduces the
powerful support vector machines. Finally, in chapter 7 we see a meta-algorithm,
AdaBoost, which is a classifier made up of a collection of classifiers. Chapter 7
concludes part 1 on classification with a section on classification imbalance,
which is a real-world problem where you have more data from one class than

other classes.

Machine learning basics

This chapter covers

= A brief overview of machine learning

m Key tasks in machine learning

® Why you need to learn about machine learning
m Why Python is so great for machine learning

I was eating dinner with a couple when they asked what I was working on recently. I
replied, “Machine learning.” The wife turned to the husband and said, “Honey,
what’s machine learning?” The husband replied, “Cyberdyne Systems T-800.” If you
aren’t familiar with the Terminator movies, the T-800 is artificial intelligence gone
very wrong. My friend was a little bit off. We’re not going to attempt to have conver-
sations with computer programs in this book, nor are we going to ask a computer
the meaning of life. With machine learning we can gain insight from a dataset; we’re
going to ask the computer to make some sense from data. This is what we mean by
learning, not cyborg rote memorization, and not the creation of sentient beings.
Machine learning is actively being used today, perhaps in many more places than
you’d expect. Here’s a hypothetical day and the many times you’ll encounter
machine learning: You realize it’s your friend’s birthday and want to send her a card
via snail mail. You search for funny cards, and the search engine shows you the 10

CHAPTER 1 Machine learning basics

most relevant links. You click the second link; the search engine learns from this. Next,
you check some email, and without your noticing it, the spam filter catches unsolicited
ads for pharmaceuticals and places them in the Spam folder. Next, you head to the
store to buy the birthday card. When you’re shopping for the card, you pick up some
diapers for your friend’s child. When you get to the checkout and purchase the items,
the human operating the cash register hands you a coupon for $1 off a six-pack of beer.
The cash register’s software generated this coupon for you because people who buy dia-
pers also tend to buy beer. You send the birthday card to your friend, and a machine at
the post office recognizes your handwriting to direct the mail to the proper delivery
truck. Next, you go to the loan agent and ask them if you are eligible for loan; they don’t

answer but plug some financial information about you into the computer and a deci-
sion is made. Finally, you head to the casino for some late-night entertainment, and as
you walk in the door, the person walking in behind you gets approached by security
seemingly out of nowhere. They tell him, “Sorry, Mr. Thorp, we’re going to have to ask
you to leave the casino. Card counters aren’t welcome here.” Figure 1.1 illustrates
where some of these applications are being used.

Today's Recommendations F

Here's a daily sample of items recomm
for you. Click here to see all

recommendations. { morev

Starred *

Figure 1.1 Examples
of machine learning in
action today, clockwise
from top left: face recog-
nition, handwriting digit
recognition, spam filter-
ing in email, and product
recommendations from
Amazon.com

All Mail
Spam (106)

Trash
BR

‘UI.I\‘r or k

The Manga Guide to the
Univers... (Paperback) by Kenji Manage labels

000000000

1.1

What is machine learning? 5

In all of the previously mentioned scenarios, machine learning was present. Compa-
nies are using it to improve business decisions, increase productivity, detect disease,
forecast weather, and do many more things. With the exponential growth of technol-
ogy, we not only need better tools to understand the data we currently have, but we
also need to prepare ourselves for the data we will have.

Are you ready for machine learning? In this chapter you’ll find out what machine
learning is, where it’s already being used around you, and how it might help you in the
future. Next, we’ll talk about some common approaches to solving problems with
machine learning. Last, you’ll find out why Python is so great and why it’s a great lan-
guage for machine learning. Then we’ll go through a really quick example using a mod-
ule for Python called NumPy, which allows you to abstract and matrix calculations.

What is machine learning?

In all but the most trivial cases, insight or knowledge you’re trying to get out of the
raw data won’t be obvious from looking at the data. For example, in detecting spam
email, looking for the occurrence of a single word may not be very helpful. But look-
ing at the occurrence of certain words used together, combined with the length of the
email and other factors, you could get a much clearer picture of whether the email is
spam or not. Machine learning is turning data into information.

Machine learning lies at the intersection of computer science, engineering, and
statistics and often appears in other disciplines. As you’ll see later, it can be applied to
many fields from politics to geosciences. It’s a tool that can be applied to many prob-
lems. Any field that needs to interpret and act on data can benefit from machine
learning techniques.

Machine learning uses statistics. To most people, statistics is an esoteric subject
used for companies to lie about how great their products are. (There’s a great manual
on how to do this called How to Lie with Statistics by Darrell Huff. Ironically, this is the
best-selling statistics book of all time.) So why do the rest of us need statistics? The
practice of engineering is applying science to solve a problem. In engineering we’re
used to solving a deterministic problem where our solution solves the problem all the
time. If we’re asked to write software to control a vending machine, it had better work
all the time, regardless of the money entered or the buttons pressed. There are many
problems where the solution isn’t deterministic. That is, we don’t know enough about
the problem or don’t have enough computing power to properly model the problem.
For these problems we need statistics. For example, the motivation of humans is a
problem that is currently too difficult to model.

In the social sciences, being right 60% of the time is considered successful. If we
can predict the way people will behave 60% of the time, we’re doing well. How can
this be? Shouldn’t we be right all the time? If we’re not right all the time, doesn’t that
mean we’re doing something wrong?

Let me give you an example to illustrate the problem of not being able to model
the problem fully. Do humans not act to maximize their own happiness? Can’t we just

111

CHAPTER 1 Machine learning basics

predict the outcome of events involving humans based on this assumption? Perhaps,
but it’s difficult to define what makes everyone happy, because this may differ greatly
from one person to the next. So even if our assumptions are correct about people
maximizing their own happiness, the definition of happiness is too complex to model.
There are many other examples outside human behavior that we can’t currently
model deterministically. For these problems we need to use some tools from statistics.

Sensors and the data deluge

We have a tremendous amount of human-created data from the World Wide Web, but
recently more nonhuman sources of data have been coming online. The technology
behind the sensors isn’t new, but connecting them to the web is new. It’s estimated
that shortly after this book’s publication physical sensors will create 20 percent of non-
video internet traffic.!

The following is an example of an abundance of free data, a worthy cause, and the
need to sort through the data. In 1989, the Loma Prieta earthquake struck northern
California, killing 63 people, injuring 3,757, and leaving thousands homeless. A simi-
larly sized earthquake struck Haiti in 2010, killing more than 230,000 people. Shortly
after the Loma Prieta earthquake, a study was published using low-frequency mag-
netic field measurements claiming to foretell the earthquake.? A number of subse-
quent studies showed that the original study was flawed for various reasons.** Suppose
we want to redo this study and keep searching for ways to predict earthquakes so we
can avoid the horrific consequences and have a better understanding of our planet.
What would be the best way to go about this study? We could buy magnetometers with
our own money and buy pieces of land to place them on. We could ask the govern-
ment to help us out and give us money and land on which to place these magnetome-
ters. Who’s going to make sure there’s no tampering with the magnetometers, and
how can we get readings from them? There exists another low-cost solution.

Mobile phones or smartphones today ship with three-axis magnetometers. The
smartphones also come with operating systems where you can execute your own pro-
grams; with a few lines of code you can get readings from the magnetometers hun-
dreds of times a second. Also, the phone already has its own communication system
set up; if you can convince people to install and run your program, you could record a
large amount of magnetometer data with very little investment. In addition to the
magnetometers, smartphones carry a large number of other sensors including yaw-
rate gyros, three-axis accelerometers, temperature sensors, and GPS receivers, all of
which you could use to support your primary measurements.

1 http://www.gartner.com/it/ page.jsp?id=876512, retrieved 7,/29,/2010 4:36 a.m.

o

Fraser-Smith et al., “Low-frequency magnetic field measurements near the epicenter of the MS 7.1 Loma Pri-

eta earthquake,” Geophysical Research Letters 17, no. 9 (August 1990), 1465-68.

W. H. Campbell, “Natural magnetic disturbance fields, not precursors, preceding the Loma Prieta earth-

quake,” Journal of Geophysical Research 114, A05307, doi:10.1029,/2008JA013932 (2009).

J. N. Thomas, J. J. Love, and M. J. S. Johnston, “On the reported magnetic precursor of the 1989 Loma Prieta

earthquake,” Physics of the Earth and Planetary Interiors 173, no. 3—4 (2009), 207-15.

112

1.2

Key terminology 7

The two trends of mobile computing and sensor-generated data mean that we’ll be
getting more and more data in the future.

Machine learning will be more important in the future

In the last half of the twentieth century the majority of the workforce in the developed
world has moved from manual labor to what is known as knowledge work. The clear def-
initions of “move this from here to there” and “put a hole in this” are gone. Things are
much more ambiguous now; job assignments such as “maximize profits,” “minimize
risk,” and “find the best marketing strategy” are all too common. The fire hose of
information available to us from the World Wide Web makes the jobs of knowledge
workers even harder. Making sense of all the data with our job in mind is becoming a

more essential skill, as Hal Varian, chief economist at Google, said:

I keep saying the sexy job in the next ten years will be statisticians. People think I'm
joking, but who would’ve guessed that computer engineers would’ve been the sexy job of
the 1990s? The ability to take data—to be able to understand i, to process it, to extract
value from it, to visualize it, to communicate it—that’s going to be a hugely important
skill in the next decades, not only at the professional level but even at the educational
level for elementary school kids, for high school kids, for college kids. Because now we
really do have essentially free and ubiquitous data. So the complementary scarce factor is
the ability to understand that data and extract value from it. I think statisticians are
part of it, but it’s just a part. You also want to be able to visualize the data,
communicate the data, and utilize it effectively. But I do think those skills—of being
able to access, understand, and communicate the insights you get from data analysis—
are going to be extremely important. Managers need to be able to access and understand
the data themselves.

—DMcKinsey Quarterly, January 2009

With so much of the economic activity dependent on information, you can’t afford to
be lost in the data. Machine learning will help you get through all the data and extract
some information. We need to go over some vocabulary that commonly appears in
machine learning so it’s clear what’s being discussed in this book.

Key terminology

Before we jump into the machine learning algorithms, it would be best to explain
some terminology. The best way to do so is through an example of a system someone
may want to make. We’ll go through an example of building a bird classification sys-
tem. This sort of system is an interesting topic often associated with machine learning
called expert systems. By creating a computer program to recognize birds, we’ve
replaced an ornithologist with a computer. The ornithologist is a bird expert, so we’ve
created an expert system.

In table 1.1 are some values for four parts of various birds that we decided to mea-
sure. We chose to measure weight, wingspan, whether it has webbed feet, and the color
of its back. In reality, you’d want to measure more than this. It’s common practice to

CHAPTER 1 Machine learning basics

measure just about anything you can measure and sort out the important parts later.
The four things we’ve measured are called features; these are also called attributes, but
we’ll stick with the term features in this book. Each of the rows in table 1.1 is an instance
made up of features.

Table 1.1 Bird species classification based on four features

Weight (g) Wingspan (cm) Webbed feet? Back color Species
1 | 1000.1 125.0 No Brown Buteo jamaicensis
2 | 3000.7 200.0 No Gray Sagittarius serpentarius
3 | 3300.0 220.3 No Gray Sagittarius serpentarius
4 | 4100.0 136.0 Yes Black Gavia immer
5| 3.0 11.0 No Green Calothorax lucifer
6 | 570.0 75.0 No Black Campephilus principalis

The first two features in table 1.1 are numeric and can take on decimal values. The
third feature (webbed feet) is binary: it can only be 1 or 0. The fourth feature (back
color) is an enumeration over the color palette we’re using, and I just chose some very
common colors. Say we ask the people doing the measurements to choose one
of seven colors; then back color would be just an integer. (I know choosing one color
for the back of a bird is a gross oversimplification; please excuse this for the purpose
of illustration).

If you happen to see a Campephilus principalis (Ivory-billed Woodpecker), give
me a call ASAP! Don’t tell anyone else you saw it; just call me and keep an eye on the
bird until I get there. (There’s a $50,000 reward for anyone who can lead a biologist to
a living Ivory-billed Woodpecker.)

One task in machine learning is classification; I’ll illustrate this using table 1.1 and
the fact that information about an Ivory-billed Woodpecker could get us $50,000. We
want to identify this bird out of a bunch of other birds, and we want to profit from
this. We could set up a bird feeder and then hire an ornithologist (bird expert) to
watch it and when they see an Ivory-billed Woodpecker give us a call. This would be
expensive, and the person could only be in one place at a time. We could also auto-
mate this process: set up many bird feeders with cameras and computers attached to
them to identify the birds that come in. We could put a scale on the bird feeder to get
the bird’s weight and write some computer vision code to extract the bird’s wingspan,
feet type, and back color. For the moment, assume we have all that information. How
do we then decide if a bird at our feeder is an Ivory-billed Woodpecker or something
else? This task is called classification, and there are many machine learning algorithms
that are good at classification. The class in this example is the bird species; more spe-
cifically, we can reduce our classes to Ivory-billed Woodpecker or everything else.

Key terminology 9

Say we’ve decided on a machine learning algorithm to use for classification. What
we need to do next is train the algorithm, or allow it to learn. To train the algorithm we
feed it quality data known as a {raining sel. A training set is the set of training examples
we’ll use to train our machine learning algorithms. In table 1.1 our training set has six
training examples. Each training example has four features and one target variable; this is
depicted in figure 1.2. The target variable is what we’ll be trying to predict with our
machine learning algorithms. In classification the target variable takes on a nominal
value, and in the task of regression its value could be continuous. In a training set the
target variable is known. The machine learns by finding some relationship between the
features and the target variable. The target variable is the species, and as I mentioned
earlier, we can reduce this to take nominal values. In the classification problem the tar-
get variables are called classes, and there is assumed to be a finite number of classes.

NOTE Features or attributes are the individual measurements that, when
combined with other features, make up a training example. This is usually
columns in a training or test set.

To test machine learning algorithms what’s usually done is to have a training set of
data and a separate dataset, called a fest set. Initially the program is fed the training
examples; this is when the machine learning takes place. Next, the test set is fed to the
program. The target variable for each example from the test set isn’t given to the pro-
gram, and the program decides which class each example should belong to. The tar-
get variable or class that the training example belongs to is then compared to the
predicted value, and we can get a sense for how accurate the algorithm is. There are
better ways to use all the information in the test set and training set. We’ll discuss
them later.

In our bird classification example, assume we’ve tested the program and it meets
our desired level of accuracy. Can we see what the machine has learned? This is called
knowledge representation. The answer is it depends. Some algorithms have knowledge
representation that’s more readable by humans than others. The knowledge represen-
tation may be in the form of a set of rules; it may be a probability distribution or an
example from the training set. In some cases we may not be interested in building an
expert system but interested only in the knowledge representation that’s acquired
from training a machine learning algorithm.

Weight Wingspan Webbed feet? Back color Species
1000.1 125.0 No Brown Buteo jamaicensis
3000.7 200.0 No Gray Sagittarius serpentarius
Y Y
Features Target
variable

Figure 1.2 Features and target variable identified

10

1.3

CHAPTER 1 Machine learning basics

We’ve covered a lot of key terms of machine learning, but we didn’t cover them all.
We’ll introduce more key terms in later chapters as they’re needed. We’ll now address
the big picture: what we can do with machine learning.

Key tasks of machine learning

In this section we’ll outline the key jobs of machine learning and set a framework that
allows us to easily turn a machine learning algorithm into a solid working application.

The example covered previously was for the task of classification. In classification,
our job is to predict what class an instance of data should fall into. Another task in
machine learning is regression. Regression is the prediction of a numeric value. Most
people have probably seen an example of regression with a best-fit line drawn through
some data points to generalize the data points. Classification and regression are exam-
ples of supervised learning. This set of problems is known as supervised because we’re
telling the algorithm what to predict.

The opposite of supervised learning is a set of tasks known as unsupervised learning.
In unsupervised learning, there’s no label or target value given for the data. A task
where we group similar items together is known as clustering. In unsupervised learn-
ing, we may also want to find statistical values that describe the data. This is known as
density estimation. Another task of unsupervised learning may be reducing the data
from many features to a small number so that we can properly visualize it in two or
three dimensions. Table 1.2 lists some common tasks in machine learning with algo-
rithms used to solve these tasks.

Supervised learning tasks

k-Nearest Neighbors Linear
Naive Bayes Locally weighted linear
Support vector machines Ridge
Decision trees Lasso
Unsupervised learning tasks
Table 1.2 Common
) o algorithms used to perform
k-Means Expectation maximization classification, regression,
DBSCAN Parzen window clustering, and density
estimation tasks

If you noticed in table 1.2 that multiple techniques are used for completing the same
task, you may be asking yourself, “If these do the same thing, why are there four differ-
ent methods? Why can’t I just choose one method and master it?” I'll answer that
question in the next section.

1.4

1.5

Steps in developing a machine learning application 11

How to choose the right algorithm

With all the different algorithms in table 1.2, how can you choose which one to use?
First, you need to consider your goal. What are you trying to get out of this? (Do you
want a probability that it might rain tomorrow, or do you want to find groups of voters
with similar interests?) What data do you have or can you collect? Those are the big
questions. Let’s talk about your goal.

If you’re trying to predict or forecast a target value, then you need to look into
supervised learning. If not, then unsupervised learning is the place you want to be. If
you’ve chosen supervised learning, what’s your target value? Is it a discrete value like
Yes/No, 1/2/3, A/B/C, or Red/Yellow/Black? If so, then you want to look into clas-
sification. If the target value can take on a number of values, say any value from 0.00
to 100.00, or -999 to 999, or +oo to -, then you need to look into regression.

If you’re not trying to predict a target value, then you need to look into unsuper-
vised learning. Are you trying to fit your data into some discrete groups? If so and
that’s all you need, you should look into clustering. Do you need to have some numer-
ical estimate of how strong the fit is into each group? If you answer yes, then you prob-
ably should look into a density estimation algorithm.

The rules I've given here should point you in the right direction but are not
unbreakable laws. In chapter 9 I’ll show you how you can use classification techniques
for regression, blurring the distinction I made within supervised learning. The second
thing you need to consider is your data.

You should spend some time getting to know your data, and the more you know
about it, the better you’ll be able to build a successful application. Things to know
about your data are these: Are the features nominal or continuous? Are there missing
values in the features? If there are missing values, why are there missing values? Are
there outliers in the data? Are you looking for a needle in a haystack, something that
happens very infrequently? All of these features about your data can help you narrow
the algorithm selection process.

With the algorithm narrowed, there’s no single answer to what the best algorithm
is or what will give you the best results. You're going to have to try different algorithms
and see how they perform. There are other machine learning techniques that you can
use to improve the performance of a machine learning algorithm. The relative perfor-
mance of two algorithms may change after you process the input data. We’ll discuss
these in more detail later, but the point is that finding the best algorithm is an itera-
tive process of trial and error.

Many of the algorithms are different, but there are some common steps you need
to take with all of these algorithms when building a machine learning application. I'll
explain these steps in the next section.

Steps in developing a machine learning application

Our approach to understanding and developing an application using machine learn-
ing in this book will follow a procedure similar to this:

12

CHAPTER 1 Machine learning basics

Collect data. You could collect the samples by scraping a website and extracting
data, or you could get information from an RSS feed or an API. You could have a
device collect wind speed measurements and send them to you, or blood glu-
cose levels, or anything you can measure. The number of options is endless. To
save some time and effort, you could use publicly available data.

Prepare the input data. Once you have this data, you need to make sure it’s in a
useable format. The format we’ll be using in this book is the Python list. We’ll
talk about Python more in a little bit, and lists are reviewed in appendix A. The
benefit of having this standard format is that you can mix and match algorithms
and data sources.

You may need to do some algorithm-specific formatting here. Some algo-
rithms need features in a special format, some algorithms can deal with target
variables and features as strings, and some need them to be integers. We’ll get
to this later, but the algorithm-specific formatting is usually trivial compared to
collecting data.

Analyze the input data. This is looking at the data from the previous task. This
could be as simple as looking at the data you’ve parsed in a text editor to make
sure steps 1 and 2 are actually working and you don’t have a bunch of empty val-
ues. You can also look at the data to see if you can recognize any patterns or if
there’s anything obvious, such as a few data points that are vastly different from
the rest of the set. Plotting data in one, two, or three dimensions can also help.
But most of the time you’ll have more than three features, and you can’t easily
plot the data across all features at one time. You could, however, use some
advanced methods we’ll talk about later to distill multiple dimensions down to
two or three so you can visualize the data.

If you’re working with a production system and you know what the data should
look like, or you trust its source, you can skip this step. This step takes human
involvement, and for an automated system you don’t want human involvement.
The value of this step is that it makes you understand you don’t have garbage
coming in.

Train the algorithm. This is where the machine learning takes place. This step
and the next step are where the “core” algorithms lie, depending on the algo-
rithm. You feed the algorithm good clean data from the first two steps and
extract knowledge or information. This knowledge you often store in a format
that’s readily useable by a machine for the next two steps.

In the case of unsupervised learning, there’s no training step because you
don’t have a target value. Everything is used in the next step.

Test the algorithm. This is where the information learned in the previous step is
put to use. When you’re evaluating an algorithm, you’ll test it to see how well it
does. In the case of supervised learning, you have some known values you can
use to evaluate the algorithm. In unsupervised learning, you may have to use
some other metrics to evaluate the success. In either case, if you're not satisfied,

1.6

161

162

Why Python? 13

you can go back to step 4, change some things, and try testing again. Often the
collection or preparation of the data may have been the problem, and you’ll
have to go back to step 1.

7 Use it. Here you make a real program to do some task, and once again you see if
all the previous steps worked as you expected. You might encounter some new
data and have to revisit steps 1-5.

Now we’ll talk about a language to implement machine learning applications. We
need a language that’s understandable by a wide range of people. We also need a lan-
guage that has libraries written for a number of tasks, especially matrix math opera-
tions. We also would like a language with an active developer community. Python is
the best choice for these reasons.

Why Python?
Python is a great language for machine learning for a large number of reasons. First,
Python has clear syntax. Second, it makes text manipulation extremely easy. A large
number of people and organizations use Python, so there’s ample development and
documentation.

Executable pseudo-code

The clear syntax of Python has earned it the name executable pseudo-code. The default
install of Python already carries high-level data types like lists, tuples, dictionaries, sets,
queues, and so on, which you don’t have to program in yourself. These high-level data
types make abstract concepts easy to implement. (See appendix A for a full descrip-
tion of Python, the data types, and how to install it.) With Python, you can program in
any style you’re familiar with: object-oriented, procedural, functional, and so on.

With Python it’s easy to process and manipulate text, which makes it ideal for pro-
cessing non-numeric data. You can get by in Python with little to no regular expres-
sion usage. There are a number of libraries for using Python to access web pages, and
the intuitive text manipulation makes it easy to extract data from HTML.

Python is popular

Python is popular, so lots of examples are available, which makes learning it fast. Second,
the popularity means that there are lots of modules available for many applications.

Python is popular in the scientific and financial communities as well. A number of
scientific libraries such as SciPy and NumPy allow you to do vector and matrix opera-
tions. This makes the code even more readable and allows you to write code that looks
like linear algebra. In addition, the scientific libraries SciPy and NumPy are compiled
using lower-level languages (C and Fortran); this makes doing computations with
these tools much faster. We’ll be using NumPy extensively in this book.

The scientific tools in Python work well with a plotting tool called Matplotlib. Mat-
plotlib can plot 2D and 3D and can handle most types of plots commonly used in the
scientific world. We’ll be using Matplotlib extensively throughout this book.

14

163

1.64

CHAPTER 1 Machine learning basics

Python also has an interactive shell, which allows you to view and inspect elements
of the program as you’re developing it.

A new module for Python, called Pylab, seeks to combine NumPy, SciPy, and Mat-
plotlib into one environment and instillation. At the time of writing, this isn’t yet done
but shows great promise for the future.

What Python has that other languages don’t have

There are high-level languages that allow you to do matrix math such as MATLAB and
Mathematica. MATLAB has a number of built-in features that make machine learning
easier. MATLAB is also very fast. The problem with MATLAB is that to legally use it will
cost you a few thousand dollars. There are third-party add-ons to MATLAB but nothing
on the scale of an open source project.

There are matrix math libraries for low-level languages such as Java and C. The
problem with these languages is that it takes a lot of code to get simple things done.
First, you have to typecast variables, and then with Java it seems that you have to write
setters and getters every time you sneeze. Don’t forget subclassing. You have to sub-
class methods even if you aren’t going to use them. At the end of the day, you have
written a lot of code—sometimes tedious code—to do simple things. This isn’t the
case with Python. Python is clean, concise, and easy to read. Python is easy for non-
programmers to pick up. Java and C aren’t so easy to pick up and much less concise
than Python.

All of us learn to write in the second grade. Most of us go on to greater things.
—Bobby Knight

Perhaps one day I can replace “write” with “write code” in this quote. Some people are
actually interested in programming languages. But for many people a programming
language is simply a tool to accomplish some other task. Python is a higher-level lan-
guage; this allows you to spend more time making sense of data and less time con-
cerned with how a machine approximates the data. Python easily allows you to
effortlessly express yourself.

Drawbacks

The only real drawback of Python is that it’s not as fast as Java or C. You can, however,
call G-compiled programs from Python. This gives you the best of both worlds and
allows you to incrementally develop a program. If you experiment with an idea in
Python and decide it’s something you want to pursue in a production system, it will be
easy to make that transition. If the program is built in a modular fashion, you could
first get it up and running in Python and then to improve speed start building por-
tions of the code in C. The Boost C++ library makes this easy to do. Other tools such as
Cython and PyPy allow you write typed versions of Python with performance gains
over regular Python.

If an idea for a program or application is flawed, then it will be flawed at low speed
as well as high speed. If an idea is a bad idea, writing code to make it fast or scale to a

1.7

Getting started with the NumPy library 15

large number of users doesn’t change anything. This makes Python so beautiful that
you can quickly see an idea in action and then optimize it if needed.

Now that you know the language we’re going to be using, I'm sure you’re ready to
start using it. In the next section, we’ll walk through use of the Python shell and NumPy.

Getting started with the NumPy library

We’ll use NumPy heavily in this book because we’ll be doing some linear algebra.
Don’t worry about linear algebra—we just want to do the same math operation on lots
of different data points. If we represent our data as a matrix, we can do simple math
without a bunch of messy loops. Before we get into any machine learning algorithms,
you should make sure you have Python working and NumPy properly installed.
NumPy is a separate module for Python that doesn’t come with most distributions of
Python, so you’ll need to install it after you’ve installed Python. Start a Python shell by
opening a command prompt in Windows or a terminal in Linux and Mac OS. At the
command line, type python for Linux and Mac or c:\Python27\python.exe in Win-
dows. From this point on, anytime you see these symbols

it will mean the Python shell. In the Python shell type the following command.
>>> from numpy import *

This imports all of the NumPy modules into the current namespace. This is shown in
figure 1.3 on the Mac OS.
Next, type the following in the Python shell:

>>> random.rand(4,4)

array([[0.70328595, 0.40951383, 0.7475052 , 0.07061094],
[0.9571294 , 0.97588446, 0.2728084 , 0.5257719],
[0.05431627, 0.01396732, 0.60304292, 0.19362288],
[0.10648952, 0.27317698, 0.45582919, 0.04881605]])

This creates a random array of size 4x4; don’t worry if the numbers you see are differ-
ent from mine. These are random numbers, so your numbers should look different
from mine.

Vs Terminal — Python — 79x19

Last login: Mon Nov 22 @3:35:55 on ttysoea 8
peter-harringtons-imac:~ pbharring python

Python 2.6.1 (r261:67515, Feb 11 2616, 60:51:29)

[GCC 4.2.1 (Apple Inc. build 5646)] on darwin

Type "help", "copyright", “"credits" or "license" for more information.

s> from numpy import *

b

Figure 1.3 Starting Python from the command line and importing a module in the Python
shell

16

CHAPTER 1 Machine learning basics

NumPy matrix vs. array

In NumPy there are two different data types for dealing with rows and columns of hum-
bers. Be careful of this because they look similar, but simple mathematical opera-
tions such as multiply on the two data types can have different meanings. The matrix
data type behaves more like matrices in MATLAB.™

You can always convert an array to a matrix by calling the mat () function; type in the
following:

>>> randMat = mat (random.rand(4,4))

You will probably have different values than I have here because we’re getting random
numbers:

>>> randMat.I

matrix([[0.24497106, 1.75854497, -1.77728665, -0.0834912],
[1.49792202, 2.12925479, 1.32132491, -9.75890849],
[2.76042144, 1.67271779, -0.29226613, -8.45413693],
[-2.03011142, -3.07832136, 1.4420448 , 9.62598044]1)

The .I operator solves the inverse of a matrix. Very easy, huh? Try that in Python with-

out NumPy. If you don’t remember or never learned how to solve the inverse of a
matrix, don’t worry; it was just done for you:

>>> invRandMat = randMat.I
You can also do matrix multiplication. Let’s see that in action:

>>> randMat*invRandMat

matrix([[1.00000000e+00,
1.77635684e-15],
0.00000000e+00,
0.00000000e+001],

[0.00000000e+00,
8
2

0.00000000e+00, 2.22044605e-16,

1.00000000e+00, 0.00000000e+00,

4.44089210e-16, 1.00000000e+00,
.88178420e-16],
.22044605e-16,

1.00000000e+00]11)

0.00000000e+00, 1.11022302e-16,

This gives you just the identity matrix, a 4x4 matrix where all elements are zero except
the diagonals, which are one. This isn’t exactly true. There are some very small ele-
ments left over in the array. Let’s see the leftover results:

>>> myEye - eye(4)

matrix([[0.00000000e+00, -6.59194921e-17, -4.85722573e-17,

-4.99600361e-16],

[2.22044605e-16, 0.00000000e+00, -6.03683770e-16,
-7.77156117e-16],

[-5.55111512e-17, -1.04083409e-17, -3.33066907e-16,
-2.22044605e-16],

[5.55111512e-17, 1.56125113e-17, -5.55111512e-17,

The function eye (4) just creates an identity matrix of size 4.

1.8

Summary 17

If you got through this example, you have NumPy installed correctly. You're now
ready to start making some powerful programs using machine learning. Don’t worry if
you haven’t seen all these functions before. More NumPy functionality will be intro-
duced as it’s needed in further examples in this book.

Summary

Machine learning is already being used in your daily lives even though you may not be
aware of it. The amount of data coming at you isn’t going to decrease, and being able
to make sense of all this data will be an essential skill for people working in a data-
driven industry.

In machine learning, you look at instances of data. Each instance of data is com-
posed of a number of features. Classification, one the popular and essential tasks of
machine learning, is used to place an unknown piece of data into a known group. In
order to build or train a classifier, you feed it data for which you know the class. This
data is called your training set.

I don’t claim that our expert system used to recognize birds will be perfect or as a
good as a human. But building a machine with accuracy close to that of a human
expert could greatly increase the quality of life. When we build software that can
match the accuracy of a human doctor, people can more rapidly get treatment. Better
prediction of weather could lead to fewer water shortages and a greater supply of
food. The examples where machine learning could be useful are endless.

In the next chapter I'll introduce our first machine learning algorithm. This will
be an example of classification, which is a type of supervised learning. The next six
chapters will be on classification.

Classifying with
k-Nearest Neighbors

This chapter covers

The k-Nearest Neighbors classification algorithm
®m Parsing and importing data from a text file

m Creating scatter plots with Matplotlib
Normalizing numeric values

Have you ever seen movies categorized into genres? What defines these genres, and
who says which movie goes into what genre? The movies in one genre are similar
but based on what? I'm sure if you asked the people involved with making the mov-
ies, they wouldn’t say that their movie is just like someone else’s movie, but in some
way you know they’re similar. What makes an action movie similar to another action
movie and dissimilar to a romance movie? Do people kiss in action movies, and do
people kick in romance movies? Yes, but there’s probably more kissing in romance
movies and more kicking in action movies. Perhaps if you measured Kkisses, kicks,
and other things per movie, you could automatically figure out what genre a movie
belongs to. I’ll use movies to explain some of the concepts of k-Nearest Neighbors;
then we will move on to other applications.

18

2.1

Classifying with distance measurements 19

In this chapter, we’ll discuss our first machine-learning algorithm: k-Nearest
Neighbors. k-Nearest Neighbors is easy to grasp and very effective. We’ll first discuss
the theory and how you can use the concept of a distance measurement to classify
items. Next, you’ll see how to easily import and parse data from text files using
Python. We’ll address some common pitfalls when working with distance calculations
and data coming from numerous sources. We’ll put all of this into action in examples
for improving results from a dating website and recognizing handwritten digits.

Classifying with distance measurements

k-Nearest Neighbors
Pros: High accuracy, insensitive to outliers, no assumptions about data

Cons: Computationally expensive, requires a lot of memory

Works with: Numeric values, nominal values

The first machine-learning algorithm we’ll look at is k-Nearest Neighbors (kNN). It
works like this: we have an existing set of example data, our training set. We have
labels for all of this data—we know what class each piece of the data should fall into.
When we’re given a new piece of data without a label, we compare that new piece of
data to the existing data, every piece of existing data. We then take the most similar
pieces of data (the nearest neighbors) and look at their labels. We look at the top k
most similar pieces of data from our known dataset; this is where the k comes from. (k
is an integer and it’s usually less than 20.) Lastly, we take a majority vote from the k
most similar pieces of data, and the majority is the new class we assign to the data we
were asked to classify.

Let’s run through a quick example classifying movies into romance or action mov-
ies. Someone watched a lot of movies and counted the number of kicks and kisses in
each movie. I've plotted six movies by the number of kisses and kicks in each movie in
figure 2.1. Now, you find a movie you haven’t seen yet and want to know if it’s a
romance movie or an action movie. To determine this, we’ll use the kNN algorithm.

California Man
He's Not Really into Dudes

?
Beautiful Woman

Kevin Longblade

Robo Slayer 3000

number of kisses in the movie

Amped Il

- Figure 2.1 Classifying movies by plotting the
number of kicks in the movie number of kicks and kisses in each movie

20

CHAPTER 2 Classifying with k-Nearest Neighbors

We find the movie in question and see how many kicks and kisses it has. It’s plotted as
a large question mark along with a few other movies in figure 2.1. These values are
listed in table 2.1.

Table 2.1 Movies with the number of kicks and number of kisses shown for each movie,
along with our assessment of the movie type

Movie title # of kicks # of kisses Type of movie
California Man 3 104 Romance
He’s Not Really into Dudes 2 100 Romance
Beautiful Woman 1 81 Romance
Kevin Longblade 101 10 Action
Robo Slayer 3000 99 5 Action
Amped Il 98 2 Action
? 18 90 Unknown

We don’t know what type of movie the question mark movie is, but we have a way of
figuring that out. First, we calculate the distance to all the other movies. I've calcu-
lated the distances and shown those in table 2.2. (Don’t worry about how I did these
calculations right now. We’ll get into that in a few minutes.)

Movie title Distance to movie “?”

California Man 20.5

He’s Not Really into Dudes 18.7

Beautiful Woman 19.2

Kevin Longblade 115.3

Robo Slayer 3000 117.4

Amped Il 118.9 Table 2.2 Distances between each
movie and the unknown movie

Now that we have all the distances to our unknown movie, we need to find the k-nearest
movies by sorting the distances in decreasing order. Let’s assume k=3. Then, the three
closest movies are He’s Not Really into Dudes, Beautiful Woman, and California Man. The
kNN algorithm says to take the majority vote from these three movies to determine the
class of the mystery movie. Because all three movies are romances, we forecast that the
mystery movie is a romance movie.

We’ll work through a real machine learning algorithm in this chapter, and along
the way I’ll introduce the Python tools and machine learning terminology. First, how-
ever, we’ll go over a simple example of the kNN algorithm to make sure we’re using
the algorithm correctly.

211

Classifying with distance measurements 21

General approach to kNN
1. Collect: Any method.

2. Prepare: Numeric values are needed for a distance calculation. A structured data
format is best.

Analyze: Any method.
Train: Does not apply to the kNN algorithm.

Test: Calculate the error rate.

ONC N

Use: This application needs to get some input data and output structured num-
eric values. Next, the application runs the kNN algorithm on this input data and
determines which class the input data should belong to. The application then
takes some action on the calculated class.

Prepare: importing data with Python

First, we’ll create a Python module called kNN.py, where we’ll place all the code used
in this chapter. You can create your own file and enter code as we progress, or you can
copy the file kNN.py from the book’s source code. The best way to learn is to start with
a blank module and enter code as it’s used.

First, let’s create KNN.py or copy it from the source code repository. We’ll create a
few support functions before we create the full kNN algorithm. Add the following
lines to kNN.py:

from numpy import *
import operator

def createDataSet () :

group = array([[1.0,1.1],([1.0,1.0],([0,0],([0,0.111)

labels = ['A','A','B','B']

return group, labels
In this code, we import two modules. The first one is NumPy, which is our scientific
computing package. The second module is the operator module, which is used later
in the kNN algorithm for sorting; we’ll get to that shortly.

The function createDataSet () is there for your convenience. This creates the
dataset and labels, as shown in figure 2.1. Let’s try this out: save KNN.py, change to the
directory where you’ve stored kNN.py, and launch a Python interactive session. To get
started you need to open a new terminal in Linux/Mac OS or in Windows, so open a
command prompt. When you’re using Linux or a Mac, you need to type python at the
command line to get started, and in Windows you need to refer to the Python pro-
gram directly, such as c:\Python26\python.exe, unless you have it aliased.

Once you’ve started Python to load your module, you need to type

>>> import kNN

22

CHAPTER 2 Classifying with k-Nearest Neighbors

This will load the kNN module. To make sure that we’re looking at the same dataset, I
created a function called createDataSet. Type the following at the Python command
prompt:

>>> group, labels = kNN.createDataSet ()

This creates two variables called group and labels. To inspect each variable, type its
name at the Python command prompt:

>>> group

array ([[1. , 1.171,
[1., 1.1,
[0., 0.1,
[0., 0.111)

>>> labels

[ra', 'a', 'B', 'B']

Here we have four pieces of data. Each piece of data has two attributes or features, things
we know about it. In the group matrix each row is a different piece of data. Think of it
as a different measurement or entry in some sort of log. As humans, we can visualize
things in one, two, or sometimes three dimensions, but that’s about the limit of our
brains; to keep things easy to visualize, we’ll use only two features for each data point.

The label’s vector carries the labels we’ve given to each of the data points. There
should be as many items in this vector as there are rows in the group matrix. We
assigned the data point (1,1.1) to the class A, and similarly we assigned the data point
(0,0.1) to the class B. The values in this example are arbitrarily chosen for the purpose
of illustration, and the axes are unlabeled. The four data points with class labels are
plotted in figure 2.2.

Now that you have an idea of how to parse and load data into Python, and you have
anideaofhowthe kNNalgorithm works, let’s putitall togetherand do some classification.

1.2 . . .

1.0 Ag

0.8} |
0.6)
0.4} 1
0.2

0.0} B o 1
Figure 2.2 The four data

points of our very simple
=023 0.0 0.2 0.4 06 08 1.0 1.2 kNN example

212

Classifying with distance measurements 23

Putting the kNN classification algorithm into action

In this section we’ll build a function, shown in listing 2.1, to run the kNN algorithm on
one piece of data. I'll first show the function in pseudocode and then in actual
Python, followed by a detailed explanation of what everything in the code does.
Remember, the goal of this function is to use the kNN algorithm to classify one piece
of data called inX. Pseudocode for this function would look like this:

For every point in our dataset:
calculate the distance between inX and the current point
sort the distances in increasing order
take k items with lowest distances to inX
find the majority class among these items
return the majority class as our prediction for the class of inX

The Python code for the classify0 () function is in the following listing.

Listing 2.1 k-Nearest Neighbors algorithm

def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]

diffMat = tile(inX, (dataSetSize,1l)) - dataSet
sgDiffMat = diffMat**2 Distance
sgDistances = sgDiffMat.sum(axis=1) calculation
distances = sgDistances**0.5
sortedDistIndicies = distances.argsort ()
classCount={} Voting with lowest
for 1 in range(k): k distances
voteIlabel = labels[sortedDistIndicies[i]]
classCount [voteIlabel] = classCount.get (voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(),
key=operator.itemgetter (1), reverse=True) Sort
return sortedClassCount [0] [0] dictionary

The function classify0() takes four inputs: the input vector to classify called inX,
our full matrix of training examples called dataSet, a vector of labels called labels,
and, finally, k, the number of nearest neighbors to use in the voting. The labels vector
should have as many elements in it as there are rows in the dataSet matrix. You calcu-
late the distances @ using the Euclidian distance where the distance between two vec-
tors, XA and xB, with two elements, is given by

d = J(xAy-xBp?+(xA, - xB)°

For example, the distance between points (0,0) and (1,2) is calculated by

J(i- 0+ (2-0)7

If we are working with four features, the distance between points (1,0,0,1) and (7, 6,9, 4)
would be calculated by

J(7= D24 (6- 0+ (9= 0+ (4- 1)

24

2.1.3

22

CHAPTER 2 Classifying with k-Nearest Neighbors

Following the distance calculation, the distances are sorted from least to greatest (this
is the default). Next, @ the first k or lowest k distances are used to vote on the class of
inX. The input k should always be a positive integer. Lastly, € you take the classCount
dictionary and decompose it into a list of tuples and then sort the tuples by the second
item in the tuple using the itemgetter method from the operator module imported
in the second line of the program. This sort is done in reverse so you have largest to
smallest. Finally, you can return the label of the item occurring the most frequently.
To predict the class, type the following text at the Python prompt:

>>> kNN.classify0([0,0], group, labels, 3)

The result should be B. Try to change the [0,0] entry to see how the answer changes.
Congratulations, you just made your first classifier! You can do a lot with this sim-
ple classifier. Things will only get easier from here on out.

How to test a classifier

We built the kNN algorithm and saw that it was giving us answers we would expect. You
may be asking yourself, “At what point does this break?” or “Is it always right?” No, it’s
not always right. There are different ways of exploring how often a classifier is right.
Also, there are different things that impact the performance of a classifier, such as set-
tings of the classifier and the dataset. Different algorithms perform differently on dif-
ferent datasets. That’s why we have six chapters on classification.

To test out a classifier, you start with some known data so you can hide the answer
from the classifier and ask the classifier for its best guess. You can add up the number
of times the classifier was wrong and divide it by the total number of tests you gave it.
This will give you the error rate, which is a common measure to gauge how good a clas-
sifier is doing on a dataset. An error rate of 0 means you have a perfect classifier, and
an error rate of 1.0 means the classifier is always wrong. You'll see this in action with
some solid data later.

The example in this section worked, but it wasn’t useful. We’re going to put kNN to
use in real-world examples in the next two sections. First, we’ll look at improving the
results from a dating site with kNN, and then we’ll look at an impressive handwriting
recognition example. We’ll employ testing in the handwriting recognition example to
see if this algorithm is working.

Example: improving matches from a dating site with kNN

My friend Hellen has been using some online dating sites to find different people to
go out with. She realized that despite the site’s recommendations, she didn’t like
everyone she was matched with. After some introspection, she realized there were
three types of people she went out with:

= People she didn’t like
= People she liked in small doses
= People she liked in large doses

221

Example: improving matches from a dating site with NN 25

After discovering this, Hellen couldn’t figure out what made a person fit into any of
these categories. They all were recommended to her by the dating site. The people
whom she liked in small doses were good to see Monday through Friday, but on the
weekend she’d rather spend time with the people she liked in large doses. Hellen has
asked us to help her filter future matches to categorize them. In addition, Hellen has
collected some data that isn’t recorded by the dating site, but she feels it’s useful in
selecting people to go out with.

Example: using kNN on results from a dating site
1. Collect: Text file provided.

Prepare: Parse a text file in Python.
Analyze: Use Matplotlib to make 2D plots of our data.

Train: Doesn’t apply to the kNN algorithm.

o> @ N

Test: Write a function to use some portion of the data Hellen gave us as test ex-
amples. The test examples are classified against the non-test examples. If the
predicted class doesn’t match the real class, we’ll count that as an error.

6. Use: Build a simple command-line program Hellen can use to predict whether
she’ll like someone based on a few inputs.

Prepare: parsing data from a text file

The data Hellen collected is in a text file called datingTestSet.txt. Hellen has been col-
lecting this data for a while and has 1,000 entries. A new sample is on each line, and
Hellen has recorded the following features:

= Number of frequent flyer miles earned per year
= Percentage of time spent playing video games
= Liters of ice cream consumed per week

Before we can use this data in our classifier, we need to change it to the format that
our classifier accepts. In order to do this, we’ll add a new function to kNN.py called
file2matrix. This function takes a filename string and outputs two things: a matrix of
training examples and a vector of class labels.

Add the following code to your kNN.py.

Listing 2.2 Text record to NumPy parsing code

def file2matrix(filename) : Get number
fr = open(filename) J of lines in file
numberOfLines = len(fr.readlines())
returnMat = zeros ((numberOfLines,3)) Create NumPy
classLabelvVector = []

i matrix to return
fr = open(filename)

CHAPTER 2 Classifying with k-Nearest Neighbors

index = 0

for line in fr.readlines() : .

: : . Parse line
line = line.strip() to a list
listFromLine = line.split('\t')
returnMat [index, :] = listFromLine[0:3]

classLabelVector.append (int (listFromLine[-1]))
index += 1
return returnMat,classLabelVector

This code is a great place to demonstrate how easy it is to process text with Python. Ini-
tially, you'd like to know how many lines are in the file. @ It reads in the file and
counts the number of lines. Next, @ you create a NumPy matrix (actually, it’s a 2D
array, but don’t worry about that now) to populate and return. I've hard-coded in the
size of this to be numberOfLines x 3, but you could add some code to make this adapt-
able to the various inputs. Finally, (3) you loop over all the lines in the file and strip off
the return line character with line.strip (). Next, you split the line into a list of ele-
ments delimited by the tab character: '\t'. You take the first three elements and
shove them into a row of your matrix, and you use the Python feature of negative
indexing to get the last item from the list to put into classLabelVector. You have to
explicitly tell the interpreter that you’d like the integer version of the last item in the
list, or it will give you the string version. Usually, you’d have to do this, but NumPy
takes care of those details for you.

To use this, type the following at the Python prompt:
>>> reload (kNN)
>>> datingDataMat,datinglLabels = kNN.file2matrix('datingTestSet.txt')
Make sure that the file datingTestSet.txt is in the same directory you’re working from.
Note that before executing the function, I reloaded the kNN.py module. When you
change amodule, you need to reload that module or you’ll still be using the old version.

After successfully importing the datingTestSet.txt file, take a minute to explore the
data in Python. You should get something similar to the following.

>>> datingDataMat

array([[7.29170000e+04, 7.10627300e+00, 2.23600000e-011,
[1.42830000e+04, 2.44186700e+00, 1.90838000e-01],
[7.34750000e+04, 8.31018900e+00, 8.52795000e-01],
[1.24290000e+04, 4.43233100e+00, 9.24649000e-01],
[2.52880000e+04, 1.31899030e+01, 1.05013800e+00],
[4.91800000e+03, 3.01112400e+00, 1.90663000e-0111)

>>> datingLabels[0:20]

['didntLike', 'smallDoses', 'didntLike', 'largeDoses', 'smallDoses',
'smallDoses', 'didntLike', 'smallDoses', 'didntLike', 'didntLike',
'largeDoses', 'largeDose s', 'largeDoses', 'didntLike',6 'didntLike’',
'smallDoses', 'smallDoses', 'didntLike', 'smallDoses', 'didntLike']

Now that you have the data imported and properly formatted, let’s take a look at it
and see if we can make any sense of it. “Take a look” can mean many things. It can
mean look at the values in a text file or look at a plot of the values. We’ll next use

222

Example: improving matches from a dating site with NN 27

some of Python’s tools to make plots of the data. If we make a plot, we may be able to
distinguish some patterns.

NumPy Array and Python’s Array

We’ll be using the NumPy array extensively in this book. In your Python shell you can
import this using from numpy import array, or it will be imported when you import
all of NumPy. There’s another array type that comes with Python that we won’t be us-
ing. Don’t make the mistake of importing that array because the NumPy array meth-

ods won’t work on it.

Analyze: creating scatter plots with Matplotlib

Let’s look at the data in further detail by making some scatter plots of the data from

Matplotlib. This isn’t hard to do. From the Python console, type the following:

>>> import matplotlib

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()

>>> ax = fig.add_subplot (111)

>>> ax.scatter(datingDataMat[:,1], datingDataMat[:,2])

>>> plt.show()

You should see something like figure 2.3. We’ve plotted the second and third columns
from the datingDataMat matrix. These are all of our values for the features “Percentage

2.0 T T T T T
'.‘r.'ﬂl‘L;:.::=l!! 15 .‘Erf.

o Pt
":‘5’:':."‘. .?'". PR

1.0} r. 'i.‘f‘

Liters of Ice Cream Consumed Per Week

05} .;:..:. .{::5';?;,&",-.0". o !,]
?: .s‘?‘:é‘; ‘o .‘ > '?.i'o:: . .
s’ & ..; ® LT
0.0 t goﬁ!‘uc’l ’;‘ .:." e o)
0 5 10 15 20 25

Percentage of Time Spent Playing Video Games

Figure 2.3 Dating data without class labels. From this plot it’s difficult to dis-

cern which dot belongs to which group.

28

CHAPTER 2 Classifying with k-Nearest Neighbors

of time spent playing video games” and “Liters of ice cream consumed weekly” for all
the classes put together.

It’s hard to see any patterns in this data, but we have additional data we haven’t

used yet—the class values. If we can plot these in color or use some other markers, we
can get a better understanding of the data. The Matplotlib scatter function has addi-
tional inputs we can use to customize the markers. Type the previous code again, but
this time use the following for a scatter function:
>>> ax.scatter (datingDataMat[:,1], datingDataMatl[:,2],
15.0*array (datingLabels), 15.0*array (datingLabels))
I provided a different marker size and color that depend on the class labels we have in
datingLabels. You should see a plot similar to the one in figure 2.3. It doesn’t look like
you could make much sense of the data from figure 2.3; but if you plot columns 1 and 0
from our matrix, then you’ll see a plot like the one in figure 2.4. From this image, you
can make out three regions where the different classes lie.

Now that you can plot data using Matplotlib, you can get a better idea of exactly
what’s going on with our data. From figure 2.5, you can identify some regions where
the different classes lie.

2.0 r T T T

1.5}

U
Nr

1o} g’, |
ot

05} gbo) |
b

Liters of Ice Cream Consumed Per Week
o

A,

0.0

20 25
Percentage of Time Spent Playing Video Games

o
w
=
(=]
[
[9,]

Figure 2.4 Dating data with markers changed by class label. It’s easier to identify the
different classes, but it’s difficult to draw conclusions from looking at this data.

223

Example: improving matches from a dating site with NN 29

25

e®e Did Not Like
@ Liked in Small Doses
20 | |{@® Liked in Large Doses ° i

15

10}

Percentage of Time Spent Playing Video Games

0 30000 40000 60000 80000 100000
Frequent Flyler Miles Earned Per Year

Figure 2.5 Dating data with frequent flier miles versus percentage of time spent play-
ing video games plotted. The dating data has three features, and these two features
show areas where the three different classes lie.

Prepare: normalizing numeric values
If you were to calculate the distance between person 3 and person 4 in table 2.3, you
would have

J(0= 672+ (20,000~ 32,000 + (1.1~ 0.1)

Which term in this equation do you think is going to make the most difference? The
largest term, the number of frequent flyer miles earned per year, will have the most
effect. The frequent flyer term will dominate even though the percentage of time
spent playing video games and liters of ice cream consumed weekly have the largest
differences of any two features in table 2.3. Why should frequent flyer miles be so
important just because its values are large? It shouldn’t have any extra importance,
unless we want it to, but Hellen believes these terms are equally important.

Table 2.3 Sample of data from improved results on a dating site

Percentage of time spent Number of frequent flyer Liters of ice cream
Category

playing video games miles earned per year consumed weekly

0.8 400 0.5
12 134,000 0.9

N N W e

1
2
3|0 20,000 1.1
4| 67 32,000 0.1

30

CHAPTER 2 Classifying with k-Nearest Neighbors

When dealing with values that lie in different ranges, it’s common to normalize them.
Common ranges to normalize them to are 0 to 1 or -1 to 1. To scale everything from 0
to 1, you need to apply the following formula:

newValue = (oldValue-min)/ (max-min)

In the normalization procedure, the variables min and max are the smallest and largest
values in the dataset. This scaling adds some complexity to our classifier, but it’s worth
it to get good results. Let’s create a new function in the file KNN.py called autoNorm ()
to automatically normalize the data to values between 0 and 1.

The autoNorm() function is given in the following listing.

Listing 2.3 Data-normalizing code

def autoNorm(dataSet) :
minvals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals

normDataSet = zeros (shape (dataSet))
m = dataSet.shape[0] .
normDataSet = dataSet - tile(minvals, (m,1)) Element-wise

normDataSet = normDataSet/tile(ranges, (m,1)) division

return normDataSet, ranges, minVals

In the autoNorm() function, you get the minimum values of each column and place
this in minvals; similarly, you get the maximum values. The 0 in dataSet.min(0)
allows you to take the minimums from the columns, not the rows. Next, you calculate
the range of possible values seen in our data and then create a new matrix to return.
To get the normalized values, you subtract the minimum values and then divide
by the range. The problem with this is that our matrix is 1000x3, while the minvals
and ranges are 1x3. To overcome this, you use the NumPy tile () function to create
a matrix the same size as our input matrix and then fill it up with many copies,
or tiles. Note that it @ is element-wise division. In other numeric software packages,
the / operator can be used for matrix division, but in NumPy you need to use
linalg.solve (matA, matB) for matrix division.

To try out autoNorm, reload kNN.py, execute the function, and inspect the results
at the Python prompt:
>>> reload (kNN)
>>> normMat, ranges, minVals = kNN.autoNorm(datingDataMat)
>>> normMat
array ([[0.33060119, 0.58918886, 0.69043973],

[0.49199139, 0.50262471, 0.13468257],
[0.34858782, 0.68886842, 0.59540619],

[0.93077422, 0.52696233, 0.58885466],
[0.76626481, 0.44109859, 0.88192528],
[0.0975718 , 0.02096883, 0.02443895]1)
>>> ranges
array ([8.78430000e+04, 2.02823930e+01, 1.69197100e+00])

>>> minVals
array ([0. , 0. , 0.001818])

224

Example: improving matches from a dating site with NN 31

You could have returned just normMat, but you need the ranges and minimum values
to normalize test data. You’ll see this in action next.

Test: testing the classifier as a whole program

Now that you have the data in a format you can use, you're ready to test our classifier.
Afteryou testit, you can give it to our friend Hellen to use. One common task in machine
learning is evaluating an algorithm’s accuracy. One way you can use the existing data is
to take some portion, say 90%, to train the classifier. Then you’ll take the remaining 10%
to test the classifier and see how accurate it is. There are more advanced ways of doing
this, which we’ll address later, but for nowlet’s use this method. The 10% to be held back
should be randomly selected. Our data isn’t stored in a specific sequence, so you can
take the first 10% or last 10% without upsetting any statistics professors.

Earlier, I mentioned that you can measure the performance of a classifier with the
error rate. In classification, the error rate is the number of misclassified pieces of data
divided by the total number of data points tested. An error rate of 0 means you have a
perfect classifier, and an error rate of 1.0 means the classifier is always wrong. In our
code, you’ll measure the error rate with a counter that’s incremented every time a
piece of data is misclassified. The total number of errors divided by the total number
of data points tested will give you the error rate.

To test the classifier, you’ll create a new function in kKNN.py called datingClassTest.
This function is self-contained, so don’t worry if you closed your Python shell earlier. You
won’t have to go back and type the code again. Enter the code in the following listing
into kNN.py.

Listing 2.4 Classifier testing code for dating site

def datingClassTest () :
hoRatio = 0.10
datingDataMat,datingLabels = file2matrix('datingTestSet.txt"')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape [0]
numTestVecs = int (m*hoRatio)
errorCount = 0.0
for i in range (numTestVecs) :
classifierResult = classifyO (normMat [i, :],normMat [numTestVecs:m, :],\
datingLabels [numTestVecs:m], 3)
print "the classifier came back with: %d, the real answer is: %d4d"\
% (classifierResult, datingLabels[i])
if (classifierResult != datingLabels[i]): errorCount += 1.0

o

print "the total error rate is: %f" % (errorCount/float (numTestVecs))

The datingClassTest function is shown in listing 2.4. This uses file2matrix and
autoNorm() from earlier to get the data into a form you can use. Next, the number of
test vectors is calculated, and this is used to decide which vectors from normMat will be
used for testing and which for training. The two parts are then fed into our original
kNN classifier, classify0. Finally, the error rate is calculated and displayed. Note that
you’re using the original classifier; you spent most of this section manipulating the

32

225

CHAPTER 2 Classifying with k-Nearest Neighbors

data so that you could apply it to a simple classifier. Getting solid data is important and
will be the subject of chapter 20.

To execute this, reload kNN and then type kNN.datingClassTest () at the Python
prompt. You should get results similar to the following example:
>>> kNN.datingClassTest ()

the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2

, the real answer is:
, the real answer is:
, the real answer is:
, the real answer is:

the classifier came back with:
the classifier came back with:
the classifier came back with:

w w N R

the classifier came back with:
the classifier came back with: 2, the real answer is:
the total error rate is: 0.024000

N B WN R

The total error rate for this classifier on this dataset with these settings is 2.4%. Not
bad. You can experiment with different hoRatios and different values of k inside the
datingClassTest function. How does the error change as hoRatio is increased? Note
that the results will vary by algorithm, dataset, and settings.

The example showed that we could predict the class with only a 2.4% error. To our
friend Hellen, this means that she can enter a new person’s information, and our sys-
tem will predict whether she’ll dislike or like the person in large or small doses.

Use: putting together a useful system

Now that you’ve tested the classifier on our data, it’s time to use it to actually classify
people for Hellen. We’ll provide Hellen with a small program. Hellen will find some-
one on the dating site and enter his information. The program predicts how much
she’ll like this person.

Add the code from the following listing to KNN.py and reload kNN.

Listing 2.5 Dating site predictor function

def classifyPerson() :

resultList = ['not at all',6 'in small doses', 'in large doses']
percentTats = float (raw_input (\

"percentage of time spent playing video games?"))
ffMiles = float (raw_input ("frequent flier miles earned per year?"))

iceCream = float (raw_input ("liters of ice cream consumed per year?"))
datingDataMat,datinglLabels = file2matrix('datingTestSet.txt')

normMat, ranges, minvVals = autoNorm(datingDataMat)
inArr = array([ffMiles, percentTats, iceCream])
classifierResult = classify0 ((inArr-\
minVals) /ranges,normMat,datingLabels, 3)
print "You will probably like this person: ",\
resultList [classifierResult - 1]

The code in listing 2.5 mostly uses things you saw earlier. The only new code is the
function raw_input (). This gives the user a text prompt and returns whatever the
user enters. To see the program in action, type in the following:

2.3

23.1

Example: a handwriting recognition system 33

>>> kNN.classifyPerson/()

percentage of time spent playing video games?10

frequent flier miles earned per year?10000

liters of ice cream consumed per year?0.5

You will probably like this person: in small doses

You’ve seen how to create a classifier with some data. All of the data is easily read by a
human, but how could you use a classifier on data that isn’t easily read by a human?
The next section contains another example, this time showing how you can apply kNN
to things as diverse as images where the data is in binary form.

Example: a handwriting recognition system

We’re going to work through an example of handwriting recognition with our kNN
classifier. We’ll be working only with the digits 0-9. Some examples are shown in fig-
ure 2.6. These digits were processed through image-processing software to make them
all the same size and color.! They’re all 32x32 black and white. The binary images
were converted to text format to make this example easier, although it isn’t the most
efficient use of memory.

Example: using kNN on a handwriting recognition system
1. Collect: Text file provided.

2. Prepare: Write a function to convert from the image format to the list format
used in our classifier, classify0 ().

3. Analyze: We’ll look at the prepared data in the Python shell to make sure it's
correct.

4. Train: Doesn’t apply to the kNN algorithm.

5. Test: Write a function to use some portion of the data as test examples. The
test examples are classified against the non-test examples. If the predicted
class doesn’t match the real class, you’ll count that as an error.

6. Use: Not performed in this example. You could build a complete program to extract
digits from an image, such a system used to sort the mail in the United States.

Prepare: converting images into test vectors

The images are stored in two directories in the chapter 2 source code. The training-
Digits directory contains about 2,000 examples similar to those in figure 2.6. There
are roughly 200 samples from each digit. The testDigits directory contains about 900
examples. We’ll use the trainingDigits directory to train our classifier and testDigits to

! The dataset is a modified version of the “Optical Recognition of Handwritten Digits Data Set” by E. Alpaydin,
C. Kaynak, Department of Computer Engineering at Bogazici University, 80815 Istanbul Turkey, retrieved
from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml) on October 3, 2010.

34

CHAPTER 2 Classifying with k-Nearest Neighbors

A BPNAPPPPAR111111111110HPAGA
HAAAABEEAR1111111111111AABBA

B BBBRRRAA11111111111111168666

'Hnunuﬁnn111111111111iinnﬁnnnumnu
A

BBBBER1111008881111 l]l']ld L5]575]
130AAPEAR111100008

11000
515155 I 11114 HHHHI 111000000000 BEEAAE BBBBER111111606600¢ i
BBBBBE11111188000001190BBBBEERREG BEEBBPBRERBERBER1111116800B0BBBBA [-il-il-ll-ll-tl'iF’]L’]L‘J[-ﬂ-!l-ll-ll-]l\-ﬂ'i1 1111888888880
00PARRA1111110A806001111110000AA PABAAERABRAREARA111111A00AAREARE BRABAAAAEA H 0000AA11111000000AB0B0
5] (515

PPPARARBER111111111111111PAAAAAAD PARAAAPPABAREAR1111110AAANPABAAD 11
BBPBBEEEEEP1111111111111 68800006 BEEBRPBRPEBERER1111118600BBBBBBEA |
1
|
1

APARARRRRRAA1 1

APARARPAAA BEDDRBRPBRBA1 1

BBBRBRE 1HBBBBBEEEEE1 1

slafslslalalslals 515)] als BEBEE1111686866 §

il i 1 BEBBRERRAAA11111ABBAAABRBBREAREA

l»ilv1lv1L1L‘|HUldldldl»il-1HHJ_ 11111 Pil-'][v‘]HHHUHUUIII-‘I L1F‘|Hmildldlil-1lv1l 11 S151% G[515 ldldldldlild[v‘lh 5| B lr‘|ldidldldlv1lv1£1n 5515]
AAPRABARPRRAPPA111111APPRRARAAANE PARBARPA11111 5

ARRAARARAAAARA111111ARAARARAAARAN PARBARA111111

HEBBBEREPREEREGE11111100BBBAEEEREA BERAEEA111111

PBBEEERNEBPERA11111188RBBEERRBEE PEEAEA11111

BERRBEENEBRBERA11111BBBBEARBEAN BRBAE111111

HEBRRRARARRERAAA1111 BBBBRRAEARGR BRAAA111111

11
11
11
|
i
i
1
11

i1 AARAPAAPABARA
11 11 AARRRAARPARRARARAAR
11 1 HERRBERRREARRBERRBREAEA
11 AARARRARRARARRRARAARAA

Figure 2.6 Examples of the handwritten digits dataset

test it. There’ll be no overlap between the two groups. Feel free to take a look at the
files in those folders.

We’d like to use the same classifier that we used in the previous two examples, so
we’re going to need to reformat the images to a single vector. We’ll take the 32x32
matrix that is each binary image and make it a 1x1024 vector. After we do this, we can
apply it to our existing classifier.

The following code is a small function called img2vector, which converts the
image to a vector. The function creates a 1x1024 NumPy array, then opens the given
file, loops over the first 32 lines in the file, and stores the integer value of the first 32
characters on each line in the NumPy array. This array is finally returned.

def img2vector (filename) :

returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):

lineStr = fr.readline()

for j in range(32):

returnVect [0,32*1+j] = int(lineStr[j])

return returnVect

Try out the img2vector code with the following commands in the Python shell, and
compare the results to a file opened with a text editor:

>>> testVector = kNN.img2vector ('testDigits/0_13.txt')

>>> testVector[0,0:31]

array([0., 0., o0., 0., 0., oO0., 0., 0., 0., 0., 0., 0., O.,
0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.1)

>>> testVector[0,32:63]

array([0., 0., o0., 0., 0., oO0., 0., 0., 0., 0., 0., 0., 1.,
1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.1)

Example: a handwriting recognition system 35

2.3.2 Test: kNN on handwritten digits

Now that you have the data in a format that you can plug into our classifier, you're
ready to test out this idea and see how well it works. The function shown in listing 2.6,
handwritingClassTest (), is a self-contained function that tests out our classifier. You
can add it to kNN.py. Before you add it, make sure to add from os import listdir to
the top of the file. This imports one function, listdir, from the os module, so that
you can see the names of files in a given directory.

Listing 2.6 Handwritten digits testing code

def handwritingClassTest () :
hwLabels = [] Get contents of

trainingFileList = listdir('trainingDigits') directory

m = len(trainingFileList)
trainingMat = zeros((m,1024))
for 1 in range(m) :

fileNameStr = trainingFileList[i] V Process class num

fileStr = fileNameStr.split('.') [0]
; from filename

classNumStr = int (fileStr.split(' ') [0])

hwLabels.append (classNumStr)

trainingMat [i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits"')
errorCount = 0.0

mTest = len(testFileList)
for i in range (mTest) :
fileNameStr = testFilelList [i]

fileStr = fileNameStr.split('.") [0]
classNumStr = int (fileStr.split (' ') [0])
vectorUnderTest = img2vector ('testDigits/%s' % fileNameStr)

classifierResult = classify0O(vectorUnderTest, \
trainingMat, hwLabels, 3)
print "the classifier came back with: %d, the real answer is: %d4d"\

o

% (classifierResult, classNumStr)
if (classifierResult != classNumStr): errorCount += 1.0

o

print "\nthe total number of errors is: %d" % errorCount

o

print "\nthe total error rate is: %f" % (errorCount/float (mTest))

In listing 2.6, you get the contents for the trainingDigits directory @ as a list. Then
you see how many files are in that directory and call this m. Next, you create a training
matrix with m rows and 1024 columns to hold each image as a single row. You parse out
the class number from the filename. @ The filename is something like 9_45.txt,
where 9 is the class number and it is the 45th instance of the digit 9. You then put this
class number in the hwLabels vector and load the image with the function img2vector
discussed previously. Next, you do something similar for all the files in the testDigits
directory, but instead of loading them into a big matrix, you test each vector individu-
ally with our classify0 function. You didn’t use the autoNorm() function from sec-
tion 2.2 because all of the values were already between 0 and 1.

To execute this from the Python shell, type kNN.handwritingClassTest () at the
Python prompt. It’s quite interesting to watch. Depending on your machine’s speed, it

36

24

CHAPTER 2 Classifying with k-Nearest Neighbors

will take some time to load the dataset. Then, when the function begins testing, you
can see the results as they come back. You should have output that’s similar to the fol-
lowing example:

>>> KNN.handwritingClassTest ()
the classifier came back with: 0, the real answer is: 0
the classifier came back with: 0, the real answer is: 0

, the real answer is:
, the real answer is:

the classifier came back with: 7
7
the classifier came back with: 8, the real answer is:
8
8
6

the classifier came back with:

the classifier came back with: , the real answer is:
the classifier came back with: , the real answer is:
, the real answer is:

W 0 0 © I 3

the classifier came back with:

the classifier came back with: 9, the real answer is: 9
the total number of errors is: 11
the total error rate is: 0.011628

Using the kNN algorithm on this dataset, you were able to achieve an error rate of 1.2%.
You can vary k to see how this changes. You can also modify the handwritingClassTest
function to randomly select training examples. That way, you can vary the number of
training examples and see how that impacts the error rate.

Depending on your computer’s speed, you may think this algorithm is slow, and
you’d be right. For each of our 900 test cases, you had to do 2,000 distance calcula-
tions on a 1024-entry floating point vector. Additionally, our test dataset size was 2 MB.
Is there a way to make this smaller and take fewer computations? One modification to
kNN, called kD-trees, allows you to reduce the number of calculations.

Summary

The k-Nearest Neighbors algorithm is a simple and effective way to classify data. The
examples in this chapter should be evidence of how powerful a classifier it is. KNN is
an example of instance-based learning, where you need to have instances of data close
at hand to perform the machine learning algorithm. The algorithm has to carry
around the full dataset; for large datasets, this implies a large amount of storage. In
addition, you need to calculate the distance measurement for every piece of data in
the database, and this can be cumbersome.

An additional drawback is that kNN doesn’t give you any idea of the underlying
structure of the data; you have no idea what an “average” or “exemplar” instance from
each class looks like. In the next chapter, we’ll address this issue by exploring ways in
which probability measurements can help you do classification.

Splitting datasets one
Jeature at a time:
decision trees

This chapter covers

® |ntroducing decision trees

® Measuring consistency in a dataset

m Using recursion to construct a decision tree
® Plotting trees in Matplotlib

Have you ever played a game called Twenty Questions? If not, the game works like
this: One person thinks of some object and players try to guess the object. Players
are allowed to ask 20 questions and receive only yes or no answers. In this game, the
people asking the questions are successively splitting the set of objects they can
deduce. A decision tree works just like the game Twenty Questions; you give it a
bunch of data and it generates answers to the game.

37

38

CHAPTER 3 Splitting datasets one feature at a time: decision trees

The decision tree is one of the most commonly used classification techniques;
recent surveys claim that it’s the most commonly used technique.' You don’t have to
know much about machine learning to understand how it works.

If you’re not already familiar with decisions trees, the concept is straightforward.
Chances are good that you’ve already seen a decision tree without knowing it. Figure 3.1
shows a flowchart, which is a decision tree. It has decision blocks (rectangles) and termi-
nating blocks (ovals) where some conclusion has been reached. The right and left arrows
coming out of the decision blocks are known as branches, and they can lead to other deci-
sion blocks or to a terminating block. In this particular example, I made a hypothetical
email classification system, which first checks the domain of the sending email address.
If this is equal to myEmployer.com, it will classify the email as “Email to read when
bored.” If itisn’t from that domain, it checks to see if the body of the email contains the
word hockey. If the email contains the word hockey, then this email is classified as “Email
from friends; read immediately”; if the body doesn’t contain the word hockey, then it gets
classified as “Spam; don’t read.”

The kNN algorithm in chapter 2 did a great job of classifying, but it didn’t lead to
any major insights about the data. One of the best things about decision trees is that
humans can easily understand the data.

The algorithm you’ll build in this chapter will be able to take a set of data, build a
decision tree, and draw a tree like the one in figure 3.1. The decision tree does a great
job of distilling data into knowledge. With this, you can take a set of unfamiliar data
and extract a set of rules. The machine learning will take place as the machine creates
these rules from the dataset. Decision trees are often used in expert systems, and the
results obtained by using them are often comparable to those from a human expert
with decades of experience in a given field.

Sending email
address is
myEmployer.com

False

Email body
contains the
word hockey

False

Spam; don’t read

Email from friends;
read immediately

Figure 3.1 A decision
tree in flowchart form

1

Giovanni Seni and John Elder, Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predic-

tions, Synthesis Lectures on Data Mining and Knowledge Discovery (Morgan and Claypool, 2010), 28.

3.1

Tree construction 39

Now that you know a little of what decision trees are good for, we’re going to get into
the process of building them from nothing but a pile of data. In the first section, we’ll
discuss methods used to construct trees and start writing code to construct a tree.
Next, we’ll address some metrics that we can use to measure the algorithm’s success.
Finally, we’ll use recursion to build our classifier and plot it using Matplotlib. When
we have the classifier working, we’ll take some data of a contact lens prescription and
use our classifier to try to predict what lenses people will need.

Tree construction

Decision trees

Pros: Computationally cheap to use, easy for humans to understand learned results,
missing values OK, can deal with irrelevant features

Cons: Prone to overfitting

Works with: Numeric values, nominal values

In this section we’re going to walk through the decision tree-building algorithm, with
all its fine details. We’ll first discuss the mathematics that decide how to split a dataset
using something called information theory. We’ll then write some code to apply this the-
ory to our dataset, and finally we’ll write some code to build a tree.

To build a decision tree, you need to make a first decision on the dataset to dictate
which feature is used to split the data. To determine this, you try every feature and mea-
sure which split will give you the best results. After that, you’ll split the dataset into sub-
sets. The subsets will then traverse down the branches of the first decision node. If the
data on the branches is the same class, then you’ve properly classified it and don’t need
to continue splitting it. If the data isn’t the same, then you need to repeat the splitting
process on this subset. The decision on how to split this subset is done the same way as
the original dataset, and you repeat this process until you’ve classified all the data.

Pseudo-code for a function called createBranch () would look like this:

Check if every item in the dataset is in the same class:
If so return the class label
Else
find the best feature to split the data
split the dataset
create a branch node
for each split
call createBranch and add the vesult to the branch node
return branch node

Please note the recursive nature of createBranch. It calls itself in the second-to-last line.
We’ll write this in Python later, but first, we need to address how to split the dataset.

40

311

CHAPTER 3 Splitting datasets one feature at a time: decision trees

General approach to decision trees
1. Collect: Any method.

2. Prepare: This tree-building algorithm works only on nominal values, so any contin-
uous values will need to be quantized.

Analyze: Any method. You should visually inspect the tree after it is built.
Train: Construct a tree data structure.

Test: Calculate the error rate with the learned tree.

o o B W

Use: This can be used in any supervised learning task. Often, trees are used to
better understand the data.

Some decision trees make a binary split of the data, but we won’t do this. If we split on
an attribute and it has four possible values, then we’ll split the data four ways and cre-
ate four separate branches. We’ll follow the ID3 algorithm, which tells us how to split
the data and when to stop splitting it. (See http://en.wikipedia.org/wiki/
ID3_algorithm for more information.) We’re also going to split on one and only one
feature at a time. If our training set has 20 features, how do we choose which one to
use first?

See the data in table 3.1. It contains five animals pulled from the sea and asks if
they can survive without coming to the surface and if they have flippers. We would like
to classify these animals into two classes: fish and not fish. Now we want to decide
whether we should split the data based on the first feature or the second feature. To
answer this question, we need some quantitative way of determining how to split the
data. We’ll discuss that next.

Can survive without Has flippers? Fish?

coming to surface?

1| Yes Yes Yes
2 | Yes Yes Yes
3 | Yes No No
4 | No Yes No
5| No ves No Table 3.1 Marine animal data

Information gain

We choose to split our dataset in a way that makes our unorganized data more orga-
nized. There are multiple ways to do this, and each has its own advantages and disad-
vantages. One way to organize this messiness is to measure the information. Using

Tree construction 41

information theory, you can measure the information before and after the split. Infor-
mation theory is a branch of science that’s concerned with quantifying information.

The change in information before and after the split is known as the information
gain. When you know how to calculate the information gain, you can split your data
across every feature to see which split gives you the highest information gain. The split
with the highest information gain is your best option.

Before you can measure the best split and start splitting our data, you need to
know how to calculate the information gain. The measure of information of a set is
known as the Shannon entropy, or just entropy for short. Its name comes from the father
of information theory, Claude Shannon.

Claude Shannon

Claude Shannon is considered one of the smartest people of the twentieth century.
In William Poundstone’s 2005 book Fortune’s Formula, he wrote this of Claude
Shannon:

“There were many at Bell Labs and MIT who compared Shannon’s insight to Ein-
stein’s. Others found that comparison unfair—unfair to Shannon.”*

T William Poundstone, Fortune’s Formula: The Untold Story of the Scientific Betting System that Beat the Casi-
nos and Wall Street” (Hill and Wang, 2005), 15.

If the terms information gain and entropy sound confusing, don’t worry. They’re meant
to be confusing! When Claude Shannon wrote about information theory, John von
Neumann told him to use the term entropy because people wouldn’t know what
it meant.

Entropy is defined as the expected value of the information. First, we need to
define information. If you're classifying something that can take on multiple values,
the information for symbol xl is defined as

l(x;) = log,p(x;)
where p(xl) is the probability of choosing this class.

To calculate entropy, you need the expected value of all the information of all pos-
sible values of our class. This is given by

H==3"_ plx)log,p(x)

where 7 is the number of classes.

Let’s see how to calculate this in Python. To start, you’ll create a file called trees.py.
Insert the code from the following listing into trees.py. This listing will do entropy cal-
culations on a given dataset for you.

42

CHAPTER 3 Splitting datasets one feature at a time: decision trees

Listing 3.1 Function to calculate the Shannon entropy of a dataset

from math import log

def calcShannonEnt (dataSet) :
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:

currentLabel = featVec[-1] Create dictionary
if currentLabel not in labelCounts.keys() : of all possible
labelCounts [currentLabel] = 0 classes
labelCounts [currentLabel] += 1

shannonEnt = 0.0

for key in labelCounts:
prob = float (labelCounts [key]) /numEntries Logarithm
shannonEnt -= prob * log(prob,2) base 2

return shannonEnt

The code in listing 3.1 is straightforward. First, you calculate a count of the number of
instances in the dataset. This could have been calculated inline, but it’s used multiple
times in the code, so an explicit variable is created for it. Next, you create a dictionary
whose keys are the values in the final column. @ If a key was not encountered previ-
ously, one is created. For each key, you keep track of how many times this label occurs.
Finally, you use the frequency of all the different labels to calculate the probability of
that label. This probability is used to calculate the Shannon entropy, @ and you sum
this up for all the labels. Let’s try out this entropy stuff.

The simple data about fish identification from table 3.1 is provided in the trees.py
file by utilizing the createDataSet () function. You can enter it yourself:

def createDataSet () :

dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'mo'],
[0, 1, 'no']l,
[0, 1, 'no'l]
labels = ['no surfacing', 'flippers']

return dataSet, labels
Enter the following in your Python shell:

>>> reload(trees.py)

>>> myDat, labels=trees.createDataSet ()

>>> myDat

[f2, 1, 'yes'l, [1, 1, 'yes'l, [1, O, 'mo']l, [0, 1, 'mo'l, [0, 1, 'no'll
>>> trees.calcShannonEnt (myDat)

0.97095059445466858

The higher the entropy, the more mixed up the data is. Let’s make the data a little
messier and see how the entropy changes. We’ll add a third class, which is called
maybe, and see how the entropy changes:

>>> myDat [0] [-1]="maybe'

>>> myDat

(1, 1, 'maybe'l, [1, 1, 'yes'], [1, O, 'mno']l, [0, 1, 'no'], [0, 1, 'mo']]

>>> trees.calcShannonEnt (myDat)
1.3709505944546687

Tree construction 43

Let’s split the dataset in a way that will give us the largest information gain. We won’t
know how to do that unless we actually split the dataset and measure the information
gain.

Another common measure of disorder in a set is the Gini impurity,g which is the
probability of choosing an item from the set and the probability of that item being
misclassified. We won’t get into the Gini impurity. Instead, we’ll move on to splitting
the dataset and building the tree.

3.1.2 Splitting the dataset

You just saw how to measure the amount of disorder in a dataset. For our classifier
algorithm to work, you need to measure the entropy, split the dataset, measure the
entropy on the split sets, and see if splitting it was the right thing to do. You’ll do this
for all of our features to determine the best feature to split on. Think of it as a two-
dimensional plot of some data. You want to draw a line to separate one class from
another. Should you do this on the X-axis or the Y-axis? The answer is what you’re try-
ing to find out here.
To see this in action, open your editor and add the following code to trees.py.

Listing 3.2 Dataset splitting on a given feature

def splitDataSet (dataSet, axis, wvalue):

retDataSet = [] Create
for featVec in dataSet: separate list
if featVec[axis] == value:
reducedFeatVec = featVec[:axis] Cut out the
reducedFeatVec.extend (featVec [axis+1:]) feature split on
retDataSet .append (reducedFeatVec)

return retDataSet

The code in listing 3.2 takes three inputs: the dataset we’ll split, the feature we’ll split
on, and the value of the feature to return. Most of the time in Python, you don’t have
to worry about memory or allocation. Python passes lists by reference, so if you modify
alistin a function, the list will be modified everywhere. To account for this, you create
anew list at the beginning. @ You create a new list each time because you’ll be calling
this function multiple times on the same dataset and you don’t want the original data-
set modified. Our dataset is a list of lists; you iterate over every item in the list and if it
contains the value you’re looking for, you’ll add it to your newly created list. Inside the
if statement, you cut out the feature that you split on. ® This will be more obvious in
the next section, but think of it this way: once you’ve split on a feature, you're finished
with that feature. You used the extend() and append () methods of the Python list
type. There’s an important difference between these two methods when dealing with
multiple lists.
Assume you have two lists, a and b:

2 For more information, you should check out Introduction to Data Mining by Pan-Ning Tan, Vipin Kumar, and
Michael Steinbach; Pearson Education (Addison-Wesley, 2005), 158.

44

CHAPTER 3 Splitting datasets one feature at a time: decision trees

>>> a=[1,2,3]

>>> b=[4,5,6]

>>> a.append (b)

>>> a

[1, 2, 3, [4, 5, 6]]

If you do a.append (b), you have a list with four elements, and the fourth element is a
list. However, if you do

>>> a=[1,2,3]
>>> a.extend (b)
>>> a
1, 2, 3, 4, 5, 6]
you now have one list with all the elements from a and b.
Let’s try out the splitDataSet () function on our simple example. Add the code
from listing 3.2 to trees.py, and type in the following at your Python shell:
>>> reload (trees)
<module 'trees' from 'trees.pyc's>
>>> myDat, labels=trees.createDataSet ()
>>> myDat
tfx, 1, 'yes'l, f[1, 1, 'yes'l, [1, 0, 'mno'], [0, 1, 'mo'], [0, 1, 'no']]
>>> trees.splitDataSet (myDat,0,1)
[[1, 'yes'l, [1, 'yes']l, [0, 'no']]
>>> trees.splitDataSet (myDat,0,0)
[[1, 'no'l, [1, 'mo']]
You’re now going to combine the Shannon entropy calculation and the splitDataSet ()
function to cycle through the dataset and decide which feature is the best to split on.
Using the entropy calculation tells you which split best organizes your data.

Open your text editor and add the code from the following listing to trees.py.

Listing 3.3 Choosing the best feature to split on

def chooseBestFeatureToSplit (dataSet) :

numFeatures = len(dataSet([0]) - 1

baseEntropy = calcShannonEnt (dataSet)

bestInfoGain = 0.0; bestFeature = -1

for i in range (numFeatures) :
featList = [example[i] for example in dataSet] Create unique list
uniqueVals = set (featList) of class labels

newEntropy = 0.0

for value in uniquevVals:
subDataSet = splitDataSet (dataSet, i, value) Calculate
prob = len(subDataSet)/float (len(dataSet)) e“t""PY_f"r
newEntropy += prob * calcShannonkEnt (subDataSet) eaChsPht

infoGain = baseEntropy - newEntropy

if (infoGain > bestInfoGain) :
bestInfoGain = infoGain Find the best
bestFeature = I information gain

return bestFeature

The code in listing 3.3 is the function chooseBestFeatureToSplit (). Asyou can guess,
it chooses the feature that, when split on, best organizes your data. The functions from

Tree construction 45

listing 3.2 and listing 3.1 are used in this function. We’ve made a few assumptions about
the data. The first assumption is that it comes in the form of a list of lists, and all these
lists are of equal size. The next assumption is that the last column in the data or the last
item in each instance is the class label of that instance. You use these assumptions in the
first line of the function to find out how many features you have available in the given
dataset. We didn’t make any assumption on the type of data in the lists. It could be anum-
ber or a string; it doesn’t matter.

The next part of the code in listing 3.3 calculates the Shannon entropy of the
whole dataset before any splitting has occurred. This gives you the base disorder,
which you’ll later compare to the post split disorder measurements. The first for loop
loops over all the features in our dataset. You use list comprehensions to create a list
of all the i entries in our dataset, or all the possible values present in the data. @
Next, you use the Python native set data type. Sets are like lists, but a value can occur
only once. Creating a new set from a list is one of the fastest ways of getting the unique
values out of list in Python.

Next, you go through all the unique values of this feature and split the data for
each feature. @ The new entropy is calculated and summed up for all the unique val-
ues of that feature. The information gain is the reduction in entropy or the reduction
in messiness. I hope entropy makes sense when put in terms of reduction of disorder.
Finally, you compare the information gain among all the features and return the
index of the best feature to split on. €

Now let’s see this in action. After you enter the code from listing 3.3 into trees.py,
type the following at your Python shell:
>>> reload (trees)
<module 'trees' from 'trees.py's>
>>> myDat, labels=trees.createDataSet ()
>>> trees.chooseBestFeatureToSplit (myDat)

0

>>> myDat

[f1, 1, 'yes'l’], I[1, 1, 'yes'l, [1, O, 'mno'], [0, 1, 'mo'], [0, 1, 'mo'l]

What just happened? The code told you that the Oth feature was the best feature to
split on. Is that right? Does that make any sense? It’s the same data from table 3.1, so
let’s look at table 3.1, or the data from the variable myDat. If you split on the first fea-
ture, that is, put everything where the first feature is 1 in one group and everything
where the first feature is 0 in another group, how consistent is the data? If you do that,
the group where the first feature is 1 will have two yeses and one no. The other group
will have zero yeses and two nos. What if you split on the second feature? The first
group will have two yeses and two nos. The second group will have zero yeses and one
no. The first split does a better job of organizing the data. If you’re not convinced, you
can use the calcShannonEntropy () function from listing 3.1 to test it.

Now that you can measure how organized a dataset is and you can split the data,
it’s time to put all of this together and build the decision tree.

46

3.1.3

CHAPTER 3 Splitting datasets one feature at a time: decision trees

Recursively building the tree

You now have all the components you need to create an algorithm that makes deci-
sion trees from a dataset. It works like this: you start with our dataset and split it based
on the best attribute to split. These aren’t binary trees, so you can handle more than
two-way splits. Once split, the data will traverse down the branches of the tree to
another node. This node will then split the data again. You're going to use the princi-
ple of recursion to handle this.

You’ll stop under the following conditions: you run out of attributes on which to
split or all the instances in a branch are the same class. If all instances have the same
class, then you’ll create a leaf node, or terminating block. Any data that reaches this
leaf node is deemed to belong to the class of that leaf node. This process can be seen
in figure 3.2.

The first stopping condition makes this algorithm tractable, and you can even set
abound on the maximum number of splits you can have. You’ll encounter other
decision-tree algorithms later, such as C4.5 and CART. These do not “consume” the
features at each split. This creates a problem for these algorithms because they split

No surfacing Flippers? Fish?
1. Yes Yes Yes
2. Yes Yes Yes
3. Yes No No
4. No Yes No
5. No Yes No
1. Yes Yes
No Surfacing? 2. Yes Yes
3. No No
No Yes
N rfacing? Fish? Flippers?
4 Yes No
5 Yes No
3.

Figure 3.2 Data paths while splitting

Tree construction 47

the data, but the number of features doesn’t decrease at each split. Don’t worry about
that for now. You can simply count the number of columns in our dataset to see if
you’ve run out of attributes. If our dataset has run out of attributes but the class labels
are not all the same, you must decide what to call that leaf node. In this situation,
you’ll take a majority vote.

Open your editor of choice. Before you add the next function, you need to add the
following line to the top of trees.py: import operator. Now, add the following func-
tion to trees.py:

def majorityCnt (classList) :
classCount={}
for vote in classList:
if vote not in classCount.keys(): classCount [vote] = 0
classCount [vote] += 1
sortedClassCount = sorted(classCount.iteritems(),
key=operator.itemgetter (1), reverse=True)
return sortedClassCount [0] [0]
This function may look familiar; it’s similar to the voting portion of classify0 from
chapter 2. This function takes a list of class names and then creates a dictionary
whose keys are the unique values in classList, and the object of the dictionary is the
frequency of occurrence of each class label from classList. Finally, you use the
operator to sort the dictionary by the keys and return the class that occurs with the
greatest frequency.
Open trees.py in your editor and add the code from the following listing.

Listing 3.4 Tree-building code

def createTree (dataSet, labels):

classList = [example[-1] for example in dataSet] Stop when all

if classList.count (classList[0]) == len(classList): ’/o classes are equal
return classList [0]

if len(dataSet[0]) == 1: When no more features,
return majorityCnt (classList) return majority

bestFeat = chooseBestFeatureToSplit (dataSet)
bestFeatLabel = labels [bestFeat]
myTree = {bestFeatLabel:{}}

del (labels [bestFeat]) .
. Get list of
featValues = [example [bestFeat] for example in dataSet] .
. unique values
uniqueVals = set (featValues)

for value in uniqueVals:
subLabels = labels(:]
myTree [bestFeatLabel] [value] = createTree (splitDataSet)\
(dataSet, bestFeat, value), subLabels)
return myTree

The code in listing 3.4 takes two inputs: the dataset and a list of labels. The list of
labels contains a label for each of the features in the dataset. The algorithm could
function without this, but it would be difficult to make any sense of the data. All of the
previous assumptions about the dataset still hold. You first create a list of all the class
labels in our dataset and call this classList. The first stopping condition is that if all the

48

3.2

CHAPTER 3 Splitting datasets one feature at a time: decision trees

class labels are the same, then you return this label. @ The second stopping condition
is the case when there are no more features to split. (230 you don’t meet the stopping
conditions, then you use the function created in listing 3.3 to choose the best feature.
Next, you create your tree.

You’ll use the Python dictionary to store the tree. You could have created a special
data type, but it’s not necessary. The myTree dictionary will be used to store the tree,
and you’ll see how that works soon. You get all the unique values from the dataset for
our chosen feature: bestFeat. €@ The unique value code uses sets and is similar to a
few lines in listing 3.3.

Finally, you iterate over all the unique values from our chosen feature and recur-
sively call createTree () for each split of the dataset. This value is inserted into our
myTree dictionary, so you end up with a lot of nested dictionaries representing our
tree. Before we get into the nesting, note that the subLabels = labels[:] line makes
a copy of labels and places it in a new list called subLabels. You do this because Python
passes lists by reference and you’d like the original list to be the same every time you
call createTree ().

Let’s try out this code. After you add the code from listing 3.4 to trees.py, enter the
following in your Python shell:
>>> reload (trees)
<module 'trees' from 'trees.pyc's>
>>> myDat, labels=trees.createDataSet ()
>>> myTree = trees.createTree (myDat, labels)
>>> myTree
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

The variable myTree contains the nested dictionaries, which you’re using to represent
our tree structure. Reading left to right, the first key, 'no surfacing', is the name of
the first feature that was split by the create tree. The value of this key is another dic-
tionary. This second dictionary’s keys are the splits of the 'no surfacing' feature. The
values of these keys are the children of the 'no surfacing' node. The values are
either a class label or another dictionary. If the value is a class label, then that child is
a leaf node. If the value is another dictionary, then that child node is a decision node
and the format repeats itself. In our example, we have three leaf nodes and two deci-
sion nodes.

Now that you’ve properly constructed the tree, you need to display it so that
humans can properly understand the information.

Plotting trees in Python with Matplotlib annotations

The tree you made in the previous section is great, but it’s a little difficult to visualize.
In this section, we’ll use Matplotlib to create a tree you can look at. One of the great-
est strengths of decision trees is that humans can easily understand them. The plot-
ting library we used in the previous chapter is extremely powerful. Unfortunately,
Python doesn’t include a good tool for plotting trees, so we’ll make our own. We’ll
write a program to draw a decision tree like the one in figure 3.3.

3.2.1

Plotting trees in Python with Matplotlib annotations 49

no surfacing

()] Figure 3.3 Sample decision tree

Matplotlib annotations

Matplotlib has a great tool, called annotations, that can add text near data in a plot.
Annotations are usually used to explain some part of the data. But having the text on
top of the data looks ugly, so the tool has a built-in arrow that allows you to draw the text
a safe distance away from the data yet show what data you’re talking about. Figure 3.4
shows this in action. We have a pointat (0.2, 0.1), and we placed some textat (0.35, 0.3)
and an arrow pointing to the point at (0.2, 0.1).

Plot or graph?

Why use the word plot? Why not use the word graph for talking about showing data
in an image? In some disciplines, the word graph has a different meaning. In applied
mathematics, it’s a representation of a set of objects (vertices) connected by edges.
Any combination of the vertices can be connected by edges. In computer science, a
graph is a data structure that’s used to represent the concept from mathematics.

We’re going to hijack the annotations and use them for our tree plotting. You can
color in the box of the text and give it a shape you like. Next, you can flip the arrow
and have it point from the data point to the text box. Open your text editor and cre-
ate a new file called treePlotter.py. Add the code from the following listing.

50

CHAPTER 3 Splitting datasets one feature at a time: decision trees

0-6 T T T T T T T
0.5} ° i

0.4 .

0.3} this is my text

0.2F R

0.1 .

Figure 3.4
0)])] L L L Matplotlib annotations
8 15 0.20 025 030 035 040 045 050 0.55 demonstration

Listing 3.5 Plotting tree nodes with text annotations

import matplotlib.pyplot as plt

decisionNode = dict (boxstyle="sawtooth", fc="0.8")
, Define box and
leafNode = dict (boxstyle="round4", fc="0.8") .
) arrow formatting
arrow_args = dict (arrowstyle="<-")
def plotNode (nodeTxt, centerPt, parentPt, nodeType) : Draws annotations
createPlot.axl.annotate (nodeTxt, xy=parentPt, with arrows

xycoords="'axes fraction',
xytext=centerPt, textcoords='axes fraction',
va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)

def createPlot():
fig = plt.figure(l, facecolor='white')

fig.clf ()

createPlot.axl = plt.subplot (111, frameon=False)

plotNode ('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
plotNode ('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
plt.show ()

If createPlot () doesn’t look like createPlot () in the example text file, don’t worry.
You’ll change it later. The code in the listing begins by defining some constants that
you’ll use for formatting the nodes. @ Next, you create the plotNode () function, which
actually does the drawing. It needs a plot to draw these on, and the plot s the global vari-
able createPlot.axl.In Python, all variables are global by default, and if you know what
you’re doing, this won’t get you into trouble. Lastly, you have the createPlot () func-
tion, which is the master. Here, you create a new figure, clear it, and then draw on two
nodes to demonstrate the different types of nodes you’ll use in plotting your tree.

To give this code a try, open your Python shell and import the treePlotter file.

>>> import treePlotter
>>> treePlotter.createPlot ()

3.2.2

Plotting trees in Python with Matplotlib annotations 51

1-0 r] I I I A
0.8 - -
0.6 - -
0.4 - -
0.2 - _
{a decision node} (a leaf node)
0.0L- i | | | g Figure 3.5 Example of
%.O 0.2 0.4 0.6 0.8 1.0 the plotNode function

You should see something that looks like figure 3.5. You can alter the points in
plotNode () @ to see how the XY position changes.

Now that you can plot the nodes, you’'re ready to combine more of these to plot a
whole tree.

Constructing a tree of annotations

You need a strategy for plotting this tree. You have X and Y coordinates. Now, where
do you place all the nodes? You need to know how many leaf nodes you have so that
you can properly size things in the X direction, and you need to know how many levels
you have so you can properly size the Y direction. You're going to create two new
functions to get the two items you’re looking for. The next listing has the functions
getNumLeafs () and getTreeDepth (). Add these two functions to treePlotter.py.

Listing 3.6 Identifying the number of leaves in a tree and the depth

def getNumLeafs (myTree) :
numLeafs = 0
firstStr = myTree.keys () [0]
secondDict = myTree[firstStr]
for key in secondDict.keys () :

if type(secondDict [key])._ name_ =='dict': Test if node is
numLeafs += getNumLeafs (secondDict [key]) dictiona
else: numLeafs +=1 Y

return numLeafs

def getTreeDepth (myTree) :
maxDepth = 0
firstStr = myTree.keys () [0]
secondDict = myTree[firstStr]
for key in secondDict.keys () :
if type(secondDict [key])._ name_=='dict':

52

CHAPTER 3 Splitting datasets one feature at a time: decision trees

thisDepth = 1 + getTreeDepth (secondDict [key])
else: thisDepth = 1
if thisDepth > maxDepth: maxDepth = thisDepth
return maxDepth

The two functions in listing 3.6 have the same structure, which you’ll use again later.
The structure is built around how you store the tree in a Python dictionary. The first
key is the label of the first split, and the values associated with that key are the children
of the first node. You get out the first key and value, and then you iterate over all of
the child nodes. You test to see if the child nodes are dictionaries by using the Python
type () method. @ If the child node is of type dict, then it is another decision node
and you must recursively call your function. The getNumLeafs () function traverses
the entire tree and counts only the leaf nodes; then it returns this number. The sec-
ond function, getTreeDepth (), counts the number of times you hit a decision node.
The stopping condition is a leaf node, and once this is reached you back out of your
recursive calls and increment the count. To save you some time, I added a simple func-
tion to output premade trees. This will save you the trouble of making a tree from
data every time during testing.
Enter the following into treePlotter.py:

def retrieveTree(i):
listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': \
{o: 'no', 1: 'yes'}}}},
{'no surfacing': {0: 'mo', 1: {'flippers': \
{o: {'head': {0: 'mo', 1: 'yes'}}, 1: 'no'}}}}
]

return listOfTrees[i]
Save treePlotter.py and enter the following into your Python shell:

>>> reload(treePlotter)

<module 'treePlotter' from 'treePlotter.py'>

>>> treePlotter.retrieveTree (1)

{'no surfacing': {0: 'no', 1: {'surfacing': {0: {'head': {0: 'mo', 1:
'ves'}}, 1: 'mo'}}}} .

>>> myTree = treePlotter.retrieveTree (0)

>>> treePlotter.getNumLeafs (myTree)

3

>>> treePlotter.getTreeDepth (myTree)

2

The retrieveTree () function pulls out a predefined tree for testing. You can see that
getNumLeafs () returns three leaves, which is what tree 0 has. The function
getTreeDepth () also returns the proper number levels.

Now you can put all of these elements together and plot the whole tree. When
you’re finished, the tree will look something like the one in figure 3.6 but without the
labels on the X and Y axes.

Open your text editor and enter the code from the following listing into
treePlotter.py. Note that you probably already have a version of treePlotter().
Please change it to look like the following code.

Plotting trees in Python with Matplotlib annotations 53

Listing 3.7 The plotTree function

def plotMidText (cntrPt, parentPt, txtString):

- Plots text
xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0] between child
yMid = (parentPt[1l]-cntrPt[1])/2.0 + cntrPt[1] and parent
createPlot.axl.text (xMid, yMid, txtString)
def plotTree (myTree, parentPt, nodeTxt) :
numLeafs = getNumLeafs (myTree) Get the width
getTreeDepth (myTree) and height
firstStr = myTree.keys () [0]
cntrPt = (plotTree.xOff + (1.0 + float (numLeafs))/2.0/plotTree.totalW,\
plotTree.yOff)
plotMidText (cntrPt, parentPt, nodeTxt) Plot child
plotNode (firstStr, cntrPt, parentPt, decisionNode) value
secondDict = myTree[firstStr]
plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD Decrement
for key in secondDict.keys () : Y offset
if type (secondDict [key]). name =='dict':
plotTree (secondDict [key] , cntrPt, str (key))
else:

plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
plotNode (secondDict [key], (plotTree.xOff, plotTree.yOff),
cntrPt, leafNode)
plotMidText ((plotTree.x0ff, plotTree.yOff), cntrPt, str(key))
plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD

def createPlot (inTree) :
fig = plt.figure(l, facecolor='white')
fig.clf ()
axprops = dict (xticks=[], yticks=[])
createPlot.axl = plt.subplot (111, frameon=False, **axprops)
plotTree.totalW = float (getNumLeafs (inTree))
plotTree.totalD float (getTreeDepth (inTree))

plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
plotTree (inTree, (0.5,1.0), ''")
plt.show()

The createPlot () function is the main function you’ll use, and it calls plotTree (),
which in turns calls many of the previous functions and plotMidText (). The function
plotTree () does the majority of the work. The first thing that happens in plotTree ()
is the calculation of width and height of the tree. ® Two global variables are set up to
store the width (plotTree.totalW) and depth of the tree (plotTree.totalD). These
variables are used in centering the tree nodes vertically and horizontally. The
plotTree () function gets called recursively like getNumLeafs () and getTreeDepth ()
from listing 3.6. The width of the tree is used to calculate where to place the decision
node. The idea is to place this in the middle of all the leaf nodes below it, not place it
in the middle of its children. Also note that you use two global variables to keep track
of what has already been plotted and the appropriate coordinate to place the next
node. These values are stored in plotTree.xOff and plotTree.yOff. Another thing
to point out is that you’re plotting everything on the x-axis from 0.0 to 1.0 and on the
y-axis from 0.0 to 1.0. Figure 3.6 has these values labeled for your convenience. The

54

CHAPTER 3 Splitting datasets one feature at a time: decision trees

center point for the current node is plotted with its total width split by the total num-
ber of leafs in the global tree. This allows you to split the x-axis into as many segments
as you have leaves. The beautiful thing about plotting everything in terms of the
image width is that you can resize the image, and the node will be redrawn in its
proper place. If this was drawn in terms of pixels, that wouldn’t be the case. You
couldn’t resize the image as easily.

Next, you plot the child value or the value for the feature for the split going down
that branch. € The code in plotMidText () calculates the midpoint between the par-
ent and child nodes and puts a simple text label in the middle. @

Next, you decrement the global variable plotTree.yOff to make a note that you’re
about to draw children nodes. @ These nodes could be leaf nodes or other decision
nodes, but you need to keep track of this. You decrement rather than increment
because you start drawing from the top of the image and draw downward. You next
recursively go through the tree in a similar fashion as the getNumLeafs() and
getTreeDepth() functions. If a node is a leaf node, you draw a leaf node. If not, you
recursively call plotTree () again. Finally, after you finish plotting the child nodes,
you increment the global Y offset.

1.0~

0.8 -

0.6 -

0.4 -

0.2 -

| I 1 yes 4
%89 0.2 0.4 0.6 =) 1.0

Figure 3.6 Tree plotting of simple dataset showing figure position axes

Plotting trees in Python with Matplotlib annotations 55

The last function in listing 3.7 is createPlot (), which handles setting up the image,

calculating the global tree size, and kicking off the recursive plotTree () function.
Let’s see this in action. After you add the function to treePlotter.py, type the follow-

ing in your Python shell:

>>> reload(treePlotter)

<module 'treePlotter' from 'treePlotter.pyc'>

>>> myTree=treePlotter.retrieveTree (0)
>>> treePlotter.createPlot (myTree)

You should see something like figure 3.6 without the axis labels. Now let’s alter the
dictionary and plot it again.

>>> myTree['no surfacing'] [3]="maybe'

>>> myTree

{'no surfacing ': {0: 'mo', 1: {'flippers': {0: 'no', 1: 'yes'}}, 3:
'maybe' }}

>>> treePlotter.createPlot (myTree)

You should see something that looks like figure 3.7 (and a lot like a headless stick fig-
ure.) Feel free to play around with the tree data structures and plot them out.

Now that you can build a decision tree and plot out the tree, you can to put it to
use and see what you can learn from some data and this algorithm.

flippers

Figure 3.7 Tree plotting
with more than two splits

56

3.3

331

CHAPTER 3 Splitting datasets one feature at a time: decision trees

Testing and storing the classifier

The main focus of the first section of this book is on classification. We’ve done a lot of
work in this chapter so far building the tree from data and plotting the tree so a
human can make some sense of the data, but we haven’t yet done any classification.

In this section, you’ll build a classifier that uses our tree, and then you’ll see how to
persist that classifier on disk for longer storage in a real application. Finally, you’ll put
our decision tree code to use on some real data to see if you can predict what type of
contact lenses a person should use.

Test: using the tree for classification

You want to put our tree to use doing some classification after you’ve learned the tree
from our training data, but how do you do that? You need our tree and the label vec-
tor that you used in creating the tree. The code will then take the data under test and
compare it against the values in the decision tree. It will do this recursively until it hits
a leaf node; then it will stop because it has arrived at a conclusion.

To see this in action, open your text editor and add the code in the following list-
ing to trees.py.

Listing 3.8 Classification function for an existing decision tree

def classify(inputTree, featLabels, testVec) :
firstStr = inputTree.keys() [0]

secondDict = inputTree[firstStr] Translate label
featIndex = featLabels.index(firstStr) string to index
for key in secondDict.keys():
if testVec[featIndex] == key:
if type (secondDict [key]). name =='dict':
classLabel = classify(secondDict [key], featLabels, testVec)
else: classLabel = secondDict [key]

return classLabel

The code in listing 3.8 follows the same format as the other recursive functions in this
chapter. A problem with storing your data with the label as the feature’s identifier is
that you don’t know where this feature is in the dataset. To clear this up, you first split
on the “no surfacing” attribute, but where is that in the dataset? Is it first or second?
The Labels list will tell you this. You use the index method to find out the first item in
this list that matches firstStr. @ With that in mind, you can recursively travel the
tree, comparing the values in testVec to the values in the tree. If you reach a leaf
node, you’ve made your classification and it’s time to exit.

After you've added the code in listing 3.8 to your trees.py file, enter the following
in your Python shell:

>>> myDat, labels=trees.createDataSet ()

>>> labels

['no surfacing', 'flippers']

>>> myTree=treePlotter.retrieveTree (0)

>>> myTree

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'mo', 1: 'yes'}}}}

3.3.2

3.4

Example: using decision trees to predict contact lens type 57

>>> trees.classify(myTree, labels, [1,0])
1 no 1
>>> trees.classify(myTree, labels, [1,1])
'yes'
Compare these results to figure 3.6. You have a first node called “no surfacing” that
has two children, one called 0, which has a label of “no”, and one that’s another deci-
sion node called “flippers”. This checks out. The “flippers” node had two children. Is
this the same as between the tree you plotted and the tree data structure? Yes.

Now that you’ve built a classifier, it would be nice to be able to store this so you
don’t have to rebuild the tree every time you want to do classification.

Use: persisting the decision tree

Building the tree is the majority of the work. It may take a few seconds with our small
datasets, but, with large datasets, this can take a long time. When it’s time to classify
items with a tree, you can do it quickly. It would be a waste of time to build the tree
every time you wanted to make a classification. To get around this, you’re going to use
a Python module, which is properly named pickle, to serialize objects, as shown in the
following listing. Serializing objects allows you to store them for later use. Serializing
can be done with any object, and dictionaries work as well.

Listing 3.9 Methods for persisting the decision tree with pickle

def storeTree(in

putTree, filename) :
import pickle
fw = open(filename, 'w')
pickle.dump (inputTree, fw)
fw.close()

def grabTree (filename) :
import pickle
fr = open(filename)
return pickle.load(fr)

You can experiment with this in your Python shell by typing in the following:

>>> trees.storeTree (myTree, 'classifierStorage.txt')

>>> trees.grabTree ('classifierStorage.txt')

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

Now you have a way of persisting your classifier so that you don’t have to relearn it
every time you want to classify something. This is another advantage of decision trees
over another machine learning algorithm like kNN from chapter 2; you can distill the
dataset into some knowledge, and you use that knowledge only when you want to clas-
sify something. Let’s use the tools you’ve learned thus far on the Lenses dataset.

Example: using decision trees to predict contact lens type

In this section, we’ll go through an example that predicts the contacts lens type that
should be prescribed. You'll take a small dataset and see if you can learn anything

58 CHAPTER 3 Splitting datasets one feature at a time: decision trees

from it. You’ll see if a decision tree can give you any insight as to how the eye doctor
prescribes contact lenses. You can predict the type of lenses people will use and under-
stand the underlying processes with a decision tree.

Example: using decision trees to predict contact lens type
1. Collect: Text file provided.

2. Prepare: Parse tab-delimited lines.

3. Analyze: Quickly review data visually to make sure it was parsed properly. The fi-
nal tree will be plotted with createPlot ().

4. Train: Use createTree () from section 3.1.
5. Test: Write a function to descend the tree for a given instance.

6. Use: Persist the tree data structure so it can be recalled without building the
tree; then use it in any application.

The Lenses dataset® is one of the more famous datasets. It’s a number of observations
based on patients’ eye conditions and the type of contact lenses the doctor prescribed.
The classes are hard, soft, and no contact lenses. The data is from the UCI database
repository and is modified slightly so that it can be displayed easier. The data is stored
in a text file with the source code download.

You can load the data by typing the following into your Python shell:

>>> fr=open('lenses.txt’)

>>> lenses=[inst.strip() .split('\t') for inst in fr.readlines()]
>>> lensesLabels=['age', 'prescript',6 'astigmatic', 'tearRate'l]
>>> lensesTree = trees.createTree(lenses, lenseslLabels)

>>> lensesTree

{'tearRate': {'reduced': 'no lenses', 'normal': {'astigmatic': {'yes':
{'prescript': {'hyper': {'age': {'pre': 'no lenses', 'presbyopic':

'no lenses', 'young':'hard'}}, 'myope': 'hard'}}, 'no': {'age': {'pre':
'soft', 'presbyopic': {'prescript': {'hyper': 'soft', 'myope':

'no lenses'}}, 'young': 'soft'}}}}}}

>>> treePlotter.createPlot (lensesTree)

That tree looks difficult to read as a line of text; it’s a good thing you have a way to plot
it. The tree plotted using our createPlot () function is shown in figure 3.8. If you fol-
low the different branches of the tree, you can see what contact lenses should be pre-
scribed to a given individual. One other conclusion you can draw from figure 3.8 is
that a doctor has to ask at most four questions to determine what type of lenses a
patient will need.

* The dataset is a modified version of the Lenses dataset retrieved from the UCI Machine Learning Repository
November 3, 2010 [http://archive.ics.uci.edu/ml/machine-learning-databases/lenses/]. The source of the
data is Jadzia Cendrowska and was originally published in “PRISM: An algorithm for inducing modular rules,”
in International Journal of Man-Machine Studies (1987), 27, 349-70.

3.5

Summary 59

Figure 3.8 Decision
tree generated by the
ID3 algorithm

The tree in figure 3.8 matches our data well; however, it probably matches our data
too well. This problem is known as overfitting. In order to reduce the problem of over-
fitting, we can prune the tree. This will go through and remove some leaves. If a leaf
node adds only a little information, it will be cut off and merged with another leaf.
We’ll investigate this further when we revisit decision trees in chapter 9.

In chapter 9 we’ll also investigate another decision tree algorithm called CART.
The algorithm we used in this chapter, ID3, is good but not the best. ID3 can’t handle
numeric values. We could use continuous values by quantizing them into discrete
bins, but ID3 suffers from other problems if we have too many splits.

Summary

A decision tree classifier is just like a work-flow diagram with the terminating blocks
representing classification decisions. Starting with a dataset, you can measure the
inconsistency of a set or the entropy to find a way to split the set until all the data
belongs to the same class. The ID3 algorithm can split nominal-valued datasets. Recur-
sion is used in tree-building algorithms to turn a dataset into a decision tree. The tree
is easily represented in a Python dictionary rather than a special data structure.

Cleverly applying Matplotlib’s annotations, you can turn our tree data into an eas-
ily understood chart. The Python Pickle module can be used for persisting our tree.
The contact lens data showed that decision trees can try too hard and overfit a dataset.
This overfitting can be removed by pruning the decision tree, combining adjacent
leaf nodes that don’t provide a large amount of information gain.

There are other decision tree—generating algorithms. The most popular are C4.5
and CART. CART will be addressed in chapter 9 when we use it for regression.

60

CHAPTER 3 Splitting datasets one feature at a time: decision trees

The first two chapters in this book have drawn hard conclusions about data such as
“This data instance is in this class!” What if we take a softer approach, such as “Well,
I’m not quite sure where that data should go. Maybe here? Maybe there?” What if we
assign a probability to a data instance belonging to a given class? This will be the focus
of the next chapter.

Classifying
with probability

theory: naive Bayes

This chapter covers

Using probability distributions for classification
Learning the naive Bayes classifier

Parsing data from RSS feeds

Using naive Bayes to reveal regional attitudes

In the first two chapters we asked our classifier to make hard decisions. We asked
for a definite answer for the question “Which class does this data instance belong
to?” Sometimes the classifier got the answer wrong. We could instead ask the classi-
fier to give us a best guess about the class and assign a probability estimate to that
best guess.

Probability theory forms the basis for many machine-learning algorithms, so it’s
important that you get a good grasp on this topic. We touched on probability a bit
in chapter 3 when we were calculating the probability of a feature taking a given

61

62

4.1

CHAPTER 4 Classifying with probability theory: naive Bayes

value. We calculated the probability by counting the number of times the feature
equals that value divided by the total number of instances in the dataset. We’re going
to expand a little from there in this chapter.

We’ll look at some ways probability theory can help us classify things. We start out
with the simplest probabilistic classifier and then make a few assumptions and learn
the naive Bayes classifier. It’s called naive because the formulation makes some naive
assumptions. Don’t worry; you’ll see these in detail in a bit. We’ll take full advantage of
Python’s text-processing abilities to split up a document into a word vector. This will
be used to classify text. We’ll build another classifier and see how it does on a real-
world spam email dataset. We’ll review conditional probability in case you need a
refresher. Finally, we’ll show how you can put what the classifier has learned into
human-readable terms from a bunch of personal ad postings.

Classifying with Bayesian decision theory

Naive Bayes
Pros: Works with a small amount of data, handles multiple classes
Cons: Sensitive to how the input data is prepared

Works with: Nominal values

Naive Bayes is a subset of Bayesian decision theory, so we need to talk about Bayesian
decision theory quickly before we get to naive Bayes.

Assume for a moment that we have a dataset with two classes of data inside. A plot
of this data is shown in figure 4.1.

6 . - - -
4l |
2t]
o} 8
=2k 1
A Fi
—al 1 igure 4.1 Two proba-
A bility distribu-tions with
A known parameters de-
scribing the distribu-
%3 -2 0 4 6 tion

4.2

Conditional probability 63

We have the data shown in figure 4.1 and we have a friend who read this book; she found
the statistical parameters of the two classes of data. (Don’t worry about how to find the
statistical parameters for this type of data now; we’ll get to that in chapter 10.) We have
an equation for the probability of a piece of data belonging to Class 1 (the circles): p1 (x,
y), and we have an equation for the class belonging to Class 2 (the triangles): p2 (x, y).
To classify a new measurement with features (x, y), we use the following rules:

Ifpl(x, y) >p2(x, y), then the class is 1.
If p2 (x, y) > pl(x, y), then the class is 2.

Put simply, we choose the class with the higher probability. That’s Bayesian decision
theory in a nutshell: choosing the decision with the highest probability. Let’s get back
to the data in figure 4.1. If you can represent the data in six floating-point numbers,
and the code to calculate the probability is two lines in Python, which would you
rather do?

1 Use kNN from chapter 1, and do 1,000 distance calculations.

2 Use decision trees from chapter 2, and make a split of the data once along the
x-axis and once along the y-axis.

3 Compute the probability of each class, and compare them

The decision tree wouldn’t be very successful, and kNN would require a lot of calcula-
tions compared to the simple probability calculation. Given this problem, the best
choice would be the probability comparison we just discussed.

We’re going to have to expand on the pl and p1l probability measures I provided
here. In order to be able to calculate pl and p2, we need to discuss conditional proba-
bility. If you feel that you have a good handle on conditional probability, you can skip
the next section.

Bayes?

This interpretation of probability that we use belongs to the category called Bayesian
probability; it’s popular and it works well. Bayesian probability is named after Thomas
Bayes, who was an eighteenth-century theologian. Bayesian probability allows prior
knowledge and logic to be applied to uncertain statements. There’s another
interpretation called frequency probability, which only draws conclusions from data
and doesn’t allow for logic and prior knowledge.

Conditional probability

Let’s spend a few minutes talking about probability and conditional probability. If
you’re comfortable with the p (x,y|c;) symbol, you may want to skip this section.
Let’s assume for a moment that we have a jar containing seven stones. Three of these
stones are gray and four are black, as shown in figure 4.2. If we stick a hand into this jar
and randomly pull out a stone, what are the chances that the stone will be gray? There
are seven possible stones and three are gray, so the probability is 3/7. What is the

64

CHAPTER 4 Classifying with probability theory: naive Bayes

probability of grabbing a black stone? It’s 4/7. We
write the probability of gray as P (gray) . We calcu- Q Q O

lated the probability of drawing a gray stone

P (gray) by counting the number of gray stones
and dividing this by the total number of stones.

What if the seven stones were in two buckets?
This is Shown in ﬁgure 4.3. Figure 4.2 A collection has seven
stones that are gray or black. If we ran-
. domly select a stone from this set, the
P (black), would knowing the bucket change the probability it will be a gray stone

answer? If you wanted to calculate the probabil- is 3/7. Similarly, the probability of se-
lecting a black stone is 4/7.

If you want to calculate the P(gray) or

ity of drawing a gray stone from bucket B, you
could probably figure out how do to that. This is known as conditional probability. We’re
calculating the probability of a gray stone, given that the unknown stone comes from
bucket B. We can write this as P (gray |bucketB), and this would be read as “the prob-
ability of gray given bucket B.” It’s not hard to see that P (gray |bucketa) is 2/4 and
P (gray|bucketB) is 1/3.

To formalize how to calculate the conditional probability, we can say

P(gray|bucketB) = P(gray and bucketB) /P (bucketB)

Let’s see if that makes sense: P (gray and bucketB) =1/7. This was calculated by taking
the number of gray stones in bucket B and dividing by the total number of stones. Now,
P (bucketB) is 3/7 because there are three stones in bucket B of the total seven stones.
Finally, P (gray |bucketB) = P(gray and bucketB) /P (bucketB) = (1/7) / (3/7) =1/3.
This formal definition may seem like too much work for this simple example, but it will
be useful when we have more features. It’s also useful to have this formal definition if
we ever need to algebraically manipulate the conditional probability.

Another useful way to manipulate conditional probabilities is known as Bayes’ rule.
Bayes’ rule tells us how to swap the symbols in a conditional probability statement. If
we have P (x|c) but want to have P (c|x), we can find it with the following:

_ p(xlo9p(0)
(%)

©0 O
o0 o0

Bucket A Bucket B

plelx)

Figure 4.3 Seven stones sitting in two buckets

4.3

4.4

Document classification with naive Bayes 65

Now that we’ve discussed conditional probability, we need to see how to apply this to
our classifier. The next section will discuss how to use conditional probabilities with
Bayesian decision theory.

Classifying with conditional probabilities
In section 4.1, I said that Bayesian decision theory told us to find the two probabilities:

Ifpl(x, y) > p2(x, y), then the classis 1.
Ifp2(x, yv) > pl(x, y),then the classis 2.

These two rules don’t tell the whole story. I just left them as p1 () and p2() to keep it
as simple as possible. What we really need to compare are p(c;|x,y) and p(c;|x,y).
Let’s read these out to emphasize what they mean. Given a point identified as x,y, what
is the probability it came from class c¢;? What is the probability it came from class c.?.
The problem is that the equation from our friend is p (x,y|c;), which is not the same.
We can use Bayes’ rule to switch things around. Bayes’ rule is applied to these state-
ments as follows:

plxsyle)p(c;)
p(x,y)

With these definitions, we can define the Bayesian classification rule:

plexy) =

IfP(c,|x, y) >P(cy|x, y), the class is ¢;.
IfP(c,|x, y) <Pl(cy|x, y), the class is c,.

Using Bayes’ rule, we can calculate this unknown from three known quantities. We’ll
soon write some code to calculate these probabilities and classify items using Bayes’ rule.
Now that we’ve introduced a bit of probability theory, and you’ve seen how you can
build a classifier with it, we’re going to put this in action. The next section will intro-
duce a simple yet powerful application of the Bayesian classifier.

Document classification with naive Bayes

One important application of machine learning is automatic document classification.
In document classification, the whole document such as an individual email is our
instance and the features are things in that email. Email is an example that keeps
coming up, but you could classify news stories, message board discussions, filings with
the government, or any type of text. You can look at the documents by the words used
in them and treat the presence or absence of each word as a feature. This would give
you as many features as there are words in your vocabulary. Naive Bayes—an extension
of the Bayesian classifier introduced in the last section—is a popular algorithm for the
document-classification problem.

Earlier I mentioned that we’re going to use individual words as features and look
for the presence or absence of each word. How many features is that? Which (human)
language are we assuming? It may be more than one language. The estimated total

66

CHAPTER 4 Classifying with probability theory: naive Bayes

General approach to naive Bayes
1. Collect: Any method. We'll use RSS feeds in this chapter.

2. Prepare: Numeric or Boolean values are needed.

3. Analyze: With many features, plotting features isn’t helpful. Looking at histo-
grams is a better idea.

4. Train: Calculate the conditional probabilities of the independent features.
5. Test: Calculate the error rate.

6. Use: One common application of naive Bayes is document classification. You
can use naive Bayes in any classification setting. It doesn’t have to be text.

number of words in the English language is over 500,000.'] To be able to read in Eng-
lish, it’s estimated that you need to understand thousands of words.

Let’s assume that our vocabulary is 1,000 words long. In order to generate good
probability distributions, we need enough data samples. Let’s call this N samples. In
previous examples in this book, we had 1,000 examples for the dating site, 200 exam-
ples per digit in the handwriting recognition, and 24 examples for our decision tree.
Having 24 examples was a little bit low, 200 samples was better, and 1,000 samples was
great. In the dating example we had three features. Statistics tells us that if we need N
samples for one feature, we need N'” for 10 features and N' for our 1,000-feature
vocabulary. The number will get very large very quickly.

If we assume independence among the features, then our N'* data points get
reduced to 1000*N. By independence I mean statistical independence; one feature or
word is just as likely by itself as it is next to other words. We’re assuming that the word
bacon is as likely to appear next to unhealthy as it is next to delicious. We know this
assumption isn’t true; bacon almost always appears near delicious but very seldom near
unhealthy. This is what is meant by naivein the naive Bayes classifier. The other assump-
tion we make is that every feature is equally important. We know that isn’t true either.
If we were trying to classify a message board posting as inappropriate, we probably
don’t need to look at 1,000 words; maybe 10 or 20 will do. Despite the minor flaws of
these assumptions, naive Bayes works well in practice.

At this point you know enough about this topic to get started with some code. If
everything doesn’t make sense right now, it might help to see this in action. In the
next section, we’ll start to implement the naive Bayes classifier in Python. We’ll go
through everything that’s needed to classify text with Python.

1 http://hypertextbook.com/facts/2001/JohnnyLing.shtml retrieved October 20, 2010.

4.5

4.5.1

Classifying text with Python 67

Classifying text with Python

In order to get features from our text, we need to split up the text. But how do we do
that? Our features are going to be tokens we get from the text. A token is any combina-
tion of characters. You can think of tokens as words, but we may use things that aren’t
words such as URLs, IP addresses, or any string of characters. We’ll reduce every piece
of text to a vector of tokens where 1 represents the token existing in the document
and 0 represents that it isn’t present.

To see this in action, let’s make a quick filter for an online message board that flags
a message as inappropriate if the author uses negative or abusive language. Filtering
out this sort of thing is common because abusive postings make people not come back
and can hurt an online community. We’ll have two categories: abusive and not. We’ll
use 1 to represent abusive and 0 to represent not abusive.

First, we’re going to show how to transform lists of text into a vector of numbers.
Next, we’ll show how to calculate conditional probabilities from these vectors. Then,
we’ll create a classifier, and finally, we’ll look at some practical considerations for
implementing naive Bayes in Python.

Prepare: making word vectors from text

We’re going to start looking at text in the form of word vectors or token vectors, that
is, transform a sentence into a vector. We consider all the words in all of our docu-
ments and decide what we’ll use for a vocabulary or set of words we’ll consider. Next,
we need to transform each individual document into a vector from our vocabulary. To
get started, open your text editor, create a new file called bayes.py, and add the code
from the following listing.

Listing 4.1 Word list to vector function

def loadDataSet () :

postinglList=[['my', 'dog', 'has', 'flea', \
'problems', 'help', 'please'l,
['maybe', 'not', 'take', 'him', \
'to', 'dog', 'park',6 ‘'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', \
'T', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my',6 ‘'steak', 'how',\
'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food',6 'stupid'l]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not

return postingList,classVec

def createVocabList (dataSet) : Create an
vocabSet = set ([]) empty set
for document in dataSet:
vocabSet = vocabSet | set (document) Create the union
return list (vocabSet) of two sets

def setOfWords2Vec (vocabList, inputSet):

68

CHAPTER 4 Classifying with probability theory: naive Bayes

returnVec = [0]*len(vocabList) Create a vector
for word in inputSet: of all Os
if word in vocabList:
returnVec [vocabList.index (word)] = 1

else: print "the word: %$s is not in my Vocabulary!" % word
return returnVec

The first function creates some example data to experiment with. The first variable
returned from loadDatSet () is a tokenized set of documents from a Dalmatian (spot-
ted breed of dog) lovers message board. The text has been broken up into a set of
tokens. Punctuation has been removed from this text as well. We’ll return to text pro-
cessing later. The second variable of loadDatSet () returns a set of class labels. Here
you have two classes, abusive and not abusive. The text has been labeled by a
human and will be used to train a program to automatically detect abusive posts.

Next, the function createVocabList () will create a list of all the unique words in all
of our documents. To create this unique list you use the Python set data type. You can
give a list of items to the set constructor, and it will only return a unique list. First, you
create an empty set. @ Next, you append the set with a new set from each document.
® The | operator is used for union of two sets; recall that this is the bitwise OR operator
from C. Bitwise OR and set union also use the same symbols in mathematical notation.

Finally, after you have our vocabulary list, you can use the function

setOfWords2Vec (), which takes the vocabulary list and a document and outputs a vec-
tor of 1s and 0s to represent whether a word from our vocabulary is present or not in
the given document. You then create a vector the same length as the vocabulary list and
fill it up with 0s. € Next, you go through the words in the document, and if the word
is in the vocabulary list, you set its value to 1 in the output vector. If everything goes well,
you shouldn’t need to test if a word is in vocabList, but you may use this later.

Now let’s look at these functions in action. Save bayes.py, and enter the following
into your Python shell:
>>> import bayes
>>> listOPosts,listClasses = bayes.loadDataSet ()

>>> myVocabList = bayes.createVocabList (1istOPosts)
>>> myVocabList

['cute', 'love',6 'help', 'garbage',K 'quit', 'I', 'problems',6 'is',6 'park',
'stop', 'flea', 'dalmation', 'licks', 'food', 'not', 'him', 'buying',
'posting', 'has', 'worthless', 'ate', 'to', 'maybe', 'please', 'dog',
'how', 'stupid', 'so', 'take', 'mr', 'steak', 'my'l]

If you examine this list, you’ll see that there are no repeated words. The list is
unsorted, and if you want to sort it, you can do that later.
Let’s look at the next function setOfWords2vec():

>>> bayes.setOfWords2Vec (myVocabList, listOPosts[0])

(o, o, 1, o, o, 0, 1, o, o, 0, 1, o, o, o, o, 0, 0, 0, 1, 0, O, O, O, 1, 1,
o, o, 0, 0, 0, 0, 1]

>>> bayes.setOfWords2Vec (myVocabList, listOPosts[3])

(o, o, o0, 2, o, o, o, o, 0, 1, o, o, 0, 0, 0, 0, 0, 1, O, 1, O, O, O, O, O,
o, 1, 0o, 0, 0, 0, 0]

4.5.2

Classifying text with Python 69

This has taken our vocabulary list or list of all the words you’d like to examine and cre-
ated a feature for each of them. Now when you apply a given document (a posting to
the Dalmatian site), it will be transformed into a word vector. Check to see if this makes
sense. What'’s the word at index 2 in myVocabList? It should be Aelp. This word should
be in our first document. Now check to see that it isn’t in our fourth document.

Train: calculating probabilities from word vectors

Now that you’ve seen how to convert from words to numbers, let’s see how to calculate
the probabilities with these numbers. You know whether a word occurs in a document,
and you know what class the document belongs to. Do you remember Bayes’ rule
from section 3.2? It’s rewritten here, but I've changed the x,y to w. The bold type
means that it’s a vector; that is, we have many values, in our case as many values as
words in our vocabulary.
_ plwlc)p(e)

p(w)
We’re going to use the right side of the formula to get the value on the left. We’ll do
this for each class and compare the two probabilities. How do we get the stuff on the
right? We can calculate p(c;) by adding up how many times we see class i (abusive
posts or non-abusive posts) and then dividing by the total number of posts. How can
we get p(w|c;)? This is where our naive assumption comes in. If we expand w into
individual features, we could rewrite this as p (w,, w;, w,. .wy|c;) . Our assumption that
all the words were independently likely, and something called conditional indepen-
dence, says we can calculate this probability as p (w, | c;)p (w; | ci)p (wy|ci) .. .p (wy|cs).
This makes our calculations a lot easier.

p(ci|w)

Pseudocode for this function would look like this:

Count the number of documents in each class
for every training document:
for each class:
if a token appears in the document — increment the count for that token
increment the count for tokens
for each class:
for each token:
divide the token count by the total token count to get conditional probabilities
return conditional probabilities for each class

The code in the following listing will do these calculations for us. Open your text edi-
tor and insert this code into bayes.py. This function uses some functions from NumPy,
so make sure you add from numpy import * to the top of bayes.py.

Listing 4.2 Naive Bayes classifier training function

def trainNBO (trainMatrix,trainCategory) :
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])

70

CHAPTER 4 Classifying with probability theory: naive Bayes

pAbusive = sum(trainCategory)/float (numTrainDocs)
pONum = zeros (numWords) ; plNum = zeros (numWords) Initialize
pODenom = 0.0; plDenom = 0.0 probabilities
for i in range (numTrainDocs) :
if trainCategoryl[i] ==
plNum += trainMatrix[il] Vector
plDenom += sum(trainMatrix[il]) addition
else:
pONum += trainMatrix[i]
pODenom += sum(trainMatrix[i])
plVect = plNum/plDenom #change to log() Element-wise
pOVect = pONum/pODenom #change to log() division
return pOVect,plVect,pAbusive
The function in listing 4.2 takes a matrix of documents, trainMatrix, and a vector
with the class labels for each of the documents, trainCategory. The first thing you do
is calculate the probability the document is an abusive document (class=1). This is
P(1) from above; because this is a two-class problem, you can get P(0) by 1-P(1). For
more than a two-class problem, you’d need to modify this a little.

You initialize the numerator and denominator for the p (w;|c;) and p (w; | ¢,) calcu-
lations. @ Since you have so many ws, you're going to use NumPy arrays to calculate
these values quickly. The numerator is a NumPy array with the same number of ele-
ments as you have words in your vocabulary. In the for loop you loop over all the
documents in trainMatrix, or our training set. Every time a word appears in a docu-
ment, the count for that word (p1Num or pONum) gets incremented, and the total num-
ber of words for a document gets summed up over all the documents. ® You do this
for both classes.

Finally, you divide every element by the total number of words for that class. €
This is done compactly in NumPy by dividing an array by a float. This can’t be done
with regular Python lists. Try it out to see for yourself. Finally, the two vectors and one
probability are returned.

Let’s try this out. After you've added the code from listing 4.2 to bayes.py, open
your Python shell and enter the following:

>>> from numpy import *
>>> reload (bayes)
<module 'bayes' from 'bayes.py'>
>>> listOPosts,listClasses = bayes.loadDataSet ()
This loads the data from preloaded values.
>>> myVocabList = bayes.createVocabList (1istOPosts)
You’ve now created a list of all our words in myVocabList.
>>> trainMat=[]
>>> for postinDoc in listOPosts:
trainMat .append (bayes.setOfWords2Vec (myVocabList, postinDoc))

This for loop populates the trainMat list with word vectors. Now let’s get the proba-
bilities of being abusive and the two probability vectors:

>>> pOV,plV, pAb=bayes.trainNBO (trainMat,listClasses)

4.5.3

Classifying text with Python 71

Let’s look inside each of these variables:

>>> pAb

0.5

This is just the probability of any document being abusive.

>>> poOvV

array([0.04166667, 0.04166667, 0.04166667, 0. , 0.
0.04166667, 0. , 0.04166667, 0. ’ 0.04166667,
0.04166667, 0.125 1)

>>> plV

array ([O. , 0. ’ 0. , 0.05263158, 0.05263158,

0. , 0.15789474, 0. , 0.05263158, O. .

0. . 0. 1)
First, you found the probability that a document was abusive: pAb; this is 0.5, which is
correct. Next, you found the probabilities of the words from our vocabulary given
the document class. Let’s see if this makes sense. The first word in our vocabulary is
cute. This appears once in the 0 class and never in the 1 class. The probabilities
are 0.04166667 and 0.0. This makes sense. Let’s look for the largest probability.
That’s 0.15789474 in the P (1) array at index 21. If you look at the word in myVocabList
atindex 26, you’ll see that it’s the word stupid. This tells you that the word stupid is most
indicative of a class 1 (abusive).

Before we can go on to classification with this, we need to address a few flaws in the

previous function.

Test: modifying the classifier for real-world conditions

When we attempt to classify a document, we multiply a lot of probabilities together to
get the probability that a document belongs to a given class. This will look something
like p(wo|1)p (w;|1)p(w;|1). If any of these numbers are 0, then when we multiply
them together we get 0. To lessen the impact of this, we’ll initialize all of our occur-
rence counts to 1, and we’ll initialize the denominators to 2.

Open bayes.py in your text editor, and change lines 4 and 5 of trainNBO () to
pONum = ones (numWords) ; plNum = ones (numWords)
pODenom = 2.0; plDenom = 2.0
Another problem is underflow: doing too many multiplications of small numbers.
When we go to calculate the product p (w,|ci)p (w;|ci)p (wo|ci) .. .p(wy|ci) and many
of these numbers are very small, we’ll get underflow, or an incorrect answer. (Try to
multiply many small numbers in Python. Eventually it rounds off to 0.) One solution
to this is to take the natural logarithm of this product. If you recall from algebra,
In(a*b) = 1n(a)+1ln(b). Doing this allows us to avoid the underflow or round-off
error problem. Do we lose anything by using the natural log of a number rather than
the number itself? The answer is no. Figure 4.4 plots two functions, f(x) and
In(f(x)). If you examine both of these plots, you'll see that they increase and

72

CHAPTER 4 Classifying with probability theory: naive Bayes

1.0 r T T T

0.8 1
0.6 1
X

0.4} |

0.2} 1

&%ﬂ 0.1 0.2 0.3 0.4 0.5
0.0 r T

-0.5F 1
-1.0r b

=15} 8

In(f(x))

-2.0t |

—-2.5¢ 1

=395 01 0.2 0.3 0.4 0.5

Figure 4.4 Arbitrary functions £ (x) and 1n (£ (x)) increasing together. This shows
that the natural log of a function can be used in place of a function when you’re interested
in finding the maximum value of that function.

decrease in the same areas, and they have their peaks in the same areas. Their values
are different, but that’s fine. To modify our classifier to account for this, modify the
last two lines before the return to look like this:

plVect = log(plNum/plDenom)

pOVect = log(pONum/pODenom)

We’re now ready to build the full classifier. It’s quite simple when we’re using vector
math with NumPy. Open your text editor and add the code from the following listing
to bayes.py.

Listing 4.3 Naive Bayes classify function

def classifyNB(vec2Classify, pOVec, plVec, pClassl):

pl = sum(vec2Classify * plVec) + log(pClassl) Element-wise
p0 = sum(vec2Classify * pOVec) + log(l.0 - pClassl) multiplication
if pl > pO:

return 1
else:

return 0

def testingNB() :
listOPosts,listClasses = loadDataSet ()
myVocabList = createVocabList (listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat .append (setOfWords2Vec (myVocabList, postinDoc))

4.5.4

Classifying text with Python 73

pOV,plV,pAb = trainNBO (array(trainMat),array(listClasses))

testEntry = ['love', 'my', 'dalmation']

thisDoc = array(setOfWords2Vec (myVocabList, testEntry))

print testEntry, 'classified as: ',classifyNB(thisDoc,p0V,plV,pAb)
testEntry = ['stupid', 'garbage'l

thisDoc = array (setOfWords2Vec (myVocabList, testEntry))

print testEntry, 'classified as: ',classifyNB(thisDoc,p0V,plV,pAb)

The code in listing 4.3 takes four inputs: a vector to classify called vec2Classify and three
probabilities calculated in the function trainNBO (). You use NumPy arrays to multiply
two vectors. @ The multiplication is element-wise; that s, you multiply the first elements
of both vectors, then the second elements, and so on. You next add up the values for all
of the words in our vocabulary and add this to the log probability of the class. Finally,
you see which probability is greater and return the class label. That isn’t too hard, is it?
The second function in listing 4.3 is a convenience function to wrap up everything
properly and save you some time from typing all the code from section 4.3.1.
Let’s try it out. After you’ve added the code from listing 4.3, enter the following
into your Python shell:
>>> reload (bayes)
<module 'bayes' from 'bayes.pyc's>
>>>bayes.testingNB ()
['love', 'my', 'dalmation'] classified as: 0
["stupid', 'garbage'] classified as: 1
Change the text and see what the classifier spits out. This example is overly simplistic,
but it demonstrates how the naive Bayes classifier works. We’ll next make a few
changes to it so that it will work even better.

Prepare: the bag-of-words document model

Up until this point we’ve treated the presence or absence of a word as a feature. This
could be described as a set-of-words model. If a word appears more than once in a
document, that might convey some sort of information about the document over just
the word occurring in the document or not. This approach is known as a bag-of-words
model. A bag of words can have multiple occurrences of each word, whereas a set of
words can have only one occurrence of each word. To accommodate for this we need
to slightly change the function setOfWords2Vec () and call it bagOfWords2VecMN ().

The code to use the bag-of-words model is given in the following listing. It’s nearly
identical to the function setOfWords2Vec () listed earlier, except every time it encoun-
ters a word, it increments the word vector rather than setting the word vector to 1 for
a given index.

Listing 4.4 Naive Bayes bag-of-words model

def bagOfWords2VecMN (vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec [vocabList.index (word)] += 1
return returnvVec

74

4.6

4.6.1

CHAPTER 4 Classifying with probability theory: naive Bayes

Now that we have a classifier built, we should be able to put this into action classifying
spam.

Example: classifying spam email with naive Bayes

In the previous simple example we imported a list of strings. To use naive Bayes on
some real-life problems we’ll need to be able to go from a body of text to a list of
strings and then a word vector. In this example we’re going to visit the famous use of
naive Bayes: email spam filtering. Let’s first look at how we’d approach this problem
with our general framework.

Example: using naive Bayes to classify email
1. Collect: Text files provided.

2. Prepare: Parse text into token vectors.

3. Analyze: Inspect the tokens to make sure parsing was done correctly.
4. Train: Use trainNBO () that we created earlier.
5

Test: Use classifyNB () and create a new testing function to calculate the error
rate over a set of documents.

6. Use: Build a complete program that will classify a group of documents and print
misclassified documents to the screen.

First, we’ll create some code to parse text into tokens. Next, we’ll write a function that
ties together the parsing and the classification code from earlier in this chapter. This
function will also test the classifier and give us an error rate.

Prepare: tokenizing text

The previous section showed how to create word vectors and use naive Bayes to classify
with these word vectors. The word vectors in the previous section came premade. Let’s
see how to create your own lists of words from text documents.
If you have a text string, you can split it using the Python string .split () method.
Let’s see this in action. Enter the following into your Python shell:
>>> mySent='This book is the best book on Python or M.L. I have ever laid
eyes upon.'
>>> mySent.split ()
['This', 'book', 'is', 'the', 'best', 'book', 'on', 'Python', 'or', 'M.L.',
'I', 'have', 'ever', 'laid', 'eyes', 'upon.']
That works well, but the punctuation is considered part of the word. You can use regu-
lar expressions to split up the sentence on anything that isn’t a word or number:
>>> import re

>>> regEx = re.compile ('"\\W*"')
>>> listOfTokens = regEx.split (mySent)

4.6.2

Example: classifying spam email with naive Bayes 75

>>> listOfTokens

['This', 'book', 'is', 'the', 'best', 'book',6 'on',6 'Python', 'or', 'M',

'L', '', 'I', 'have', ‘'ever', 'laid', 'eyes', 'upon',6 '']

Now you have a list of words. But you have some empty strings you need to get rid of.
You can count the length of each string and return only the items greater than 0.

>>> [tok for tok in listOfTokens if len(tok) > 0]

Finally, the first word in the sentence is capitalized. If you were looking at sentences,
this would be helpful. You’re just looking at a bag of words, so you want all the words
to look the same whether they’re in the middle, end, or beginning of a sentence.
Python has built-in methods for converting strings to all lowercase (.lower ()) or all
uppercase (.upper ()). This will solve our problem. Let’s change our list comprehen-
sion to the following:

>>> [tok.lower () for tok in listOfTokens if len(tok) > 0]

['this', 'book', 'is', 'the', 'best', 'book',6 'on',6 'python', 'or', 'm',

'1', 'i', 'have', 'ever', 'laid', 'eyes',6 'upon']

Now let’s see this in action with a full email from our email dataset. The email dataset
is in a folder called email, with two subfolders called spam and ham.

>>> emailText = open('email/ham/6.txt').read()

>>> listOfTokens=regEx.split (emailText)

The file named 6.txt in the ham folder is quite long. It’s from a company
telling me that they no longer support something. One thing to notice is that
we now have words like en and py because they were originally part of a URL:
/answer.py?hl=en&answer=174623. When we split the URL we got a lot of words. We’d
like to get rid of these words, so we’ll filter out words with less than three characters.
We used one blanket text-parsing rule for this example. In a real-world parsing pro-
gram, you should have more advanced filters that look for things like HTML and URIs.
Right now, a URI will wind up as one of our words; www.whitehouse.gov will wind up
as three words. Text parsing can be an involved process. We’ll create a bare-bones
function, and you can modify as you see fit.

Test: cross validation with naive Bayes

Let’s put this text parser to work with a whole classifier. Open your text editor and add
the code from this listing to bayes.py.

Listing 4.5 File parsing and full spam test functions

def textParse (bigString) :
import re
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower () for tok in listOfTokens if len(tok) > 2]

def spamTest () :
docList=[]; classList = []; fullText =[]
for i in range(1,26):

76

CHAPTER 4 Classifying with probability theory: naive Bayes

°

wordList = textParse(open('email/spam/%d.txt' % i).read())
docList .append (wordList)

fullText.extend (wordList)

classList.append (1)

wordList = textParse (open('email/ham/%$d.txt' % i).read())

docList .append (wordList)

fullText.extend (wordList) Load and parse

classList.append(0) text files
vocabList = createVocabList (docList)

trainingSet = range(50); testSet=[]
for i in range(10) :
randIndex = int (random.uniform(0,len(trainingSet)))
testSet.append (trainingSet [randIndex])
del (trainingSet [randIndex])
trainMat=[]; trainClasses = []
for docIndex in trainingSet:
trainMat .append (setOfWords2Vec (vocabList, docList [docIndex]))
trainClasses.append (classList [docIndex])
pOV,plV,pSpam = trainNBO (array(trainMat) ,h array(trainClasses))
errorCount = 0
for docIndex in testSet:
wordVector = setOfWords2Vec (vocabList, docList [docIndex])
if ?lass1nyB(ar%ay(wordVector),pOV,pr,pSpam) I= Classify the G’
classList [docIndex] :
test set
errorCount += 1
print 'the error rate is: ', float (errorCount)/len(testSet)

Randomly
create the
training set

The first function, textParse (), takes a big string and parses out the text into a list of
strings. It eliminates anything under two characters long and converts everything to
lowercase. There’s a lot more parsing you could do in this function, but it’s good
enough for our purposes.

The second function, spamTest (), automates the naive Bayes spam classifier. You
load the spam and ham text files into word lists. @ Next, you create a test set and a
training set. The emails that go into the test set and the training set will be randomly
selected. In this example, we have 50 emails total (not very many). Ten of the emails
are randomly selected to be used in the test set. The probabilities will be computed
from only the documents in the training set. The Python variable trainingSet is a list
of integers from 0 to 49. Next, you randomly select 10 of those files. @ As a number is
selected, it’s added to the test set and removed from the training set. This randomly
selecting a portion of our data for the training set and a portion for the test set is
called hold-out cross validation. You’ve done only one iteration, but to get a good esti-
mate of our classifier’s true error, you should do this multiple times and take the aver-
age error rate.

The next for loop iterates through all the items in the test set and creates word vec-
tors from the words of each email and the vocabulary using setOfWords2vec (). These
words are used in traindNBO () to calculate the probabilities needed for classification.
You then iterate through the test set and classify each email in the test set. © If the
email isn’t classified correctly, the error count is incremented, and finally the total
percentage error is reported.

4.7

Example: using naive Bayes to reveal local attitudes from personal ads 77

Give this a try. After you’ve entered the code from listing 4.5, enter the following
into your Python shell:

>>> bayes.spamTest ()

the error rate is: 0.0

>>> bayes.spamTest ()

classification error ['home', 'based', 'business',6 'opportunity',
'knocking', 'your', 'door', 'don', 'rude', 'and', 'let', 'this', 'chance’,
'you', 'can', 'earn', 'great', 'income', 'and', 'find', 'your',
'financial', 'life', 'transformed', 'learn', 'more', 'here', 'your',
'success', 'work', 'from', 'home', 'finder', 'experts']

the error rate is: 0.1

The function spamTest () displays the error rate from 10 randomly selected emails.
Since these are randomly selected, the results may be different each time. If there’s an
error, it will display the word list for that document to give you an idea of what was
misclassified. To get a good estimate of the error rate, you should repeat this proce-
dure multiple times, say 10, and average the results. I did that and got an average
error rate of 6%.

The error that keeps appearing is a piece of spam that was misclassified as ham. It’s
better that a piece of spam sneaks through the filter than a valid email getting shoved
into the spam folder. There are ways to bias the classifier to not make these errors, and
we’ll talk about these in chapter 7.

Now that we’ve used naive Bayes to classify documents, we’re going to look at
another use for it. The next example will show how to interpret the knowledge
acquired from training the naive Bayes classifier.

Example: using naive Bayes to reveal local attitudes
from personal ads

Our next and final example is a fun one. We looked at two practical applications of the
naive Bayes classifier. The first one was to filter out malicious posts on a website, and the
second was to filter out spam in email. There are a number of other uses for classifica-
tion. I've seen someone take the naive Bayes classifier and train it with social network
profiles of women he liked and women he didn’t like and then use the classifier to test
how he would like an unknown person. The range of possibilities is limited only by your
imagination. It’s been shown that the older someone is, the better their vocabulary
becomes. Could we guess a person’s age by the words they use? Could we guess other
factors about the person? Advertisers would love to know specific demographics about
a person to better target the products they promote. Where would you get such training
material? The internet abounds with training material. Almost every imaginable niche
has a dedicated community where people have identified themselves as belonging to
that community. The Dalmatian owners’ site used in section 4.3.1 is a great example.

In this last example, we’ll take some data from personals ads from multiple people
for two different cities in the United States. We’re going to see if people in different
cities use different words. If they do, what are the words they use? Can the words peo-
ple use give us some idea what’s important to people in different cities?

78

4.7.1

CHAPTER 4 Classifying with probability theory: naive Bayes

Example: using naive Bayes to find locally used words
1. Collect: Collect from RSS feeds. We'll need to build an interface to the RSS feeds.

2. Prepare: Parse text into token vectors.

3. Analyze: Inspect the tokens to make sure parsing was done correctly.
4. Train: Use trainNBO () that we created earlier.
5

Test: We'll look at the error rate to make sure this is actually working. We can
make modifications to the tokenizer to improve the error rate and results.

6. Use: We’'ll build a complete program to wrap everything together. It will display
the most common words given in two RSS feeds.

We’re going to use the city that each ad comes from to train a classifier and then see
how well it does. Finally, we’re not going to use this to classify anything. We’re going to
look at the words and conditional probability scores to see if we can learn anything
specific to one city over another.

Collect: importing RSS feeds

The first thing we’re going to need to do is use Python to download the text. Luckily,
the text is readily available in RSS form. Now all we need is an RSS reader. Universal
Feed Parser is the most common RSS library for Python.

You can view documentation here: http://code.google.com/p/feedparser/. You
should be able to install it like other Python packages, by unzipping the downloaded
package, changing your directory to the unzipped package, and then typing >>python
setup.py install at the command prompt.

We’re going to use the personal ads from Craigslist, and hopefully we’ll stay Terms
Of Service compliant. To open the RSS feed from Craigslist, enter the following at
your Python shell:
>>> import feedparser
>>>ny=feedparser.parse ('http://newyork.craigslist.org/stp/index.rss"')

I've decided to use the step, or strictly platonic, section from Craigslist because other
sections can get a little lewd. You can play around with the feed and check out the
great documentation at feedparser.org. To access a list of all the entries type

>>> ny['entries']

>>> len(ny['entries'])

100

You can create a function similar to spamTest () to automate your testing. Open your
text editor and enter the code from the following listing.

Example: using naive Bayes to reveal local attitudes from personal ads 79

Listing 4.6 RSS feed classifier and frequent word removal functions

def calcMostFreq(vocabList, fullText) :

: Calculates
import operator ﬁequencyof
fregDict = {} occurrence

for token in vocabList:
fregDict [token] =fullText.count (token)
sortedFreq = sorted(fregDict.iteritems (), key=operator.itemgetter(1l),\
reverse=True)
return sortedFreq[:30]

def localWords (feedl, feedO) :
import feedparser

docList=[]; classList = []; fullText =[]

minLen = min(len(feedl['entries']),len(feed0['entries']))

for i in range (minLen) :
wordList = textParse(feedl['entries'] [i] ['summary']) Accesses
docList.append (wordList) one feed
fullText .extend (wordList) at a time
classList.append (1)
wordList = textParse(feedO['entries'] [i] ['summary'])

docList.append (wordList)
fullText .extend (wordList)

classList.append(0) D Removes
vocabList = createVocabList (docList) most
top30Words = calcMostFreq(vocabList, fullText) frequently
for pairW in top30Words: occurring
if pairW[0] in vocabList: vocabList.remove (pairW[0]) words

trainingSet = range(2*minLen); testSet=[]
for i in range(20):
randIndex = int (random.uniform(0,len(trainingSet)))
testSet.append (trainingSet [randIndex])
del (trainingSet [randIndex])
trainMat=[]; trainClasses = []
for docIndex in trainingSet:
trainMat.append (bagOfWords2VecMN (vocabList, docList [docIndex]))
trainClasses.append (classList [docIndex])
pOV,plV,pSpam = trainNBO (array (trainMat),array(trainClasses))
errorCount = 0
for docIndex in testSet:
wordVector = bagOfWords2VecMN (vocabList, docList [docIndex])
if classifyNB (array (wordVector) ,pOV,plV,pSpam) != \
classList [docIndex] :
errorCount += 1
print 'the error rate is: ',float (errorCount)/len(testSet)
return vocabList,pOV,plV

The code in listing 4.6 is similar to the spamTest () function in listing 4.5 with some
added features. One helper function is included in listing 4.6; the function is called
calcMostFreq(). @ The helper function goes through every word in the vocabulary
and counts how many times it appears in the text. The dictionary is then sorted by fre-
quency from highest to lowest, and the top 100 words are returned. You’ll see why this
is important in a second.

The next function, localWords (), takes two feeds as arguments. The feeds should
be loaded outside this function. The reason for doing this is that feeds can change

80

4.7.2

CHAPTER 4 Classifying with probability theory: naive Bayes

over time, and if you want to make some changes to our code to see how it performs,
you should have the same input data. Reloading the feeds will give you new data, and
you won’t be sure whether our code changed or new data changed our results. The
function localWords () is mostly the same as spamTest () from listing 4.5. The differ-
ences are that you access feeds @ instead of files, and you call calcMostFreg() to get
the top 100 words and then remove these words. € The rest of the function is similar
to spamTest (), except the last line returns values that you’ll use later.

You can comment out the three lines that removed the most frequently used words
and see the performance before and after. © When I did this, had an error rate of 54%
without these lines and 70% with the lines included. An interesting observation is that
the top 30 words in these posts make up close to 30% of all th